Global education meets maker education – free webinar

Why is “making” in education taking off globally? It’s because the whole world wants children to become competent and capable citizens.

Last week I had the honor and privilege of speaking to a global audience of educators at the eighth annual Global Education Conference, an online conference that supports global collaboration and connected education. The conference is unique in that it is a free, online event that takes place around the clock during International Education Week.

The sessions are now available online – mine is embedded here, but be sure to check out all the keynotes and sessions. There are inspiring collaborative project ideas, sessions on encouraging student voice, global education case studies, and more – both for K-12 and Higher Education.

The Global Education Conference organizers, Lucy Gray and Steve Hargadon, are experts at facilitating online conferences and face to face events. They will be hosting events at TCEA, ASCD, COSN, and ISTE, so be sure to sign up to be notified of these and other future opportunities.

Don’t see the embedded video? Click the image below to watch on YouTube.

SaveSave

SaveSave

SaveSave

PBL Gets a “Make”over – ISACS Learning Bridge Webinar

The Independent Schools Association of Central States (ISACS) offers Learning Bridge webinars live and recorded for professional development. (Register here)

Sylvia will be presenting:

PBL Gets a Make-Over: Prompts, Scaffolding & Assessment for the Maker Classroom
Presenter: Sylvia Martinez
Thursday, November 30, 2017
3:00 pm – 4:00 pm (central)
Audience: Faculty and Administrators, grades 3-12

Of course students should have powerful hands-on project-based experiences in the classroom—but does that happen? Explore how to design engaging prompts with helpful scaffolding and how to manage the project process when students are using cutting edge technology integrated with iterative design. Learn about new research on assessment for projects and real classroom practices using modern technology and materials.

Sylvia Martinez is the co-author of Invent to Learn: Making, Tinkering, and Engineering the Classroom helping teachers bring the exciting tools and technology of the modern world to classrooms. She advocates for student-centered project-based learning with an emphasis on STEAM for all. Sylvia is the principal advisor to the Stanford University FabLearn Fellows, a group of global educators researching and developing hands-on, minds-on projects and curriculum. She also ran educational non-profits and headed product development for consumer software, video games, and educational games at several software publishing companies. Martinez started her career designing high frequency receiver systems and software for GPS navigational satellites. She holds a masters in educational technology and a bachelor’s in electrical engineering. For more information, visit sylviamartinez.com

Price:
$75.00

Discounts of up to $15.00 per seminar are available if you register for multiple seminars.

(Register here)

 

SaveSave

See you at FETC? January 2018 in Orlando – use this discount code

I’ll be a featured speaker at the Future of Educational Technology Conference this upcoming January in Orlando, Florida. The fine folks at FETC have supplied a code for you to get a super discount to this conference — 10% off by using the Promo Code MARTINEZ18.

Plus – register now for early bird savings – FETC’s $150.00 Super Savings ends next Friday, Nov. 17. Use the link (or my promo code at the regular conference site) and get both discounts!

Hope to see you there! Here’s my lineup:

1/24/18 workshops:

  • PBL Gets a “Make”-Over: Prompts and Assessments for Maker Classrooms
  • STEAM You Can Wear!

1/25/18 sessions:

  • Invent to Learn: Remaking School for the Future
  • Making and Makerspaces: The Four Keys to Success

Use this link to go directly to the discounted registration.

My 10% discount code is good until Jan 22, 2018 – but the early bird savings only last until Nov 17 – so don’t delay!

Taking maker education to scale – interesting findings from FabLearn Denmark schools

Next week I’ll be hosted by the FabLearn DK (also known as Fablab@schools DK) network, a group of 44 (and growing) schools in four municipalities in Denmark: Kolding, Vejle, Silkeborg and Aarhus. These schools share resources, professional development, and expertise in their quest to engage students in high quality fabrication, design, and engineering experiences within the context of existing schools.

I’ll be one of the keynotes at FabLearn DK (sold out!) — but more importantly, I’ll be meeting and working with educators and learning from them. I’m very excited and honored that I can spend a week with these schools.

This is potentially a model of the elusive “scale” that so many educators seek from “maker education.”

An integral part of this effort is that a team from the University of Aarhus, led by Ole Sejer Iversen, has been documenting and conducting research from the start of the project to study how digital fabrication could promote 21st century skills in educational contexts. Here are some preliminary (draft) results from one report to be released very soon.

Fablab@school.dk status 2017

  • Number of fablab@school.dk (schools): 44
  • Teachers engaged: 1,160
  • Students engaged: 12,000

Scaling the Fablab@school initiative towards 2019 (estimates)

  • Number of fablab@school.dk (schools): 61
  • Teachers engaged: 3,050
  • Students engaged: 19,100

In a 2016 survey study with 450 fablab@school.dk affiliated students (aged 11-15) and 15 in-depth interviews we found that:

  • FabLab students improved their understandings of digital fabrication technologies and design
  • FabLab students gained experience with a range of digital fabrication technologies
  • FabLab students found the work with digital fabrication technologies motivating, interesting, and useful for their futures. They “liked” FabLab, “loved projects with digital fabrication”, and “learned a lot.”
  • Learning outcomes and motivation were very dependent on schools and teachers*

Also quoting from the draft:

There were large variations within the FabLab group with regard to the number of technologies used, design process structuring, student motivation, and students’ self-perceived knowledge, as well as on self- perceived learning outcomes such as creativity with digital fabrication technologies, abilities to critically reflect on the use of digital technologies, and complex problem solving. The variations among groups of schools followed a pattern in which higher numbers of technologies, more knowledge of the design process model, higher motivation, and better learning outcomes appeared to be connected.

In schools in which students used a wide range of technologies, worked with own ideas with a diverse range of digital technologies, and had their work scaffolded and structured around the AU Design Process Model** to a high degree, students reported that they had on average become better at imagining change with technology, at working creatively with technology, at understanding how new technologies are created, and at understanding how technology is affecting our lives as well as at solving complex problems. Thus, the FabLab@School.dk project did initiate the development of Design literacy among some students. However, it was very much up to chance, what education in digital fabrication and design processes, the students received.

My notes:
* Shocking, eh? (NOT) The full report goes into more detail on these variations, but it’s no surprise that when you give people more agency, they tend to do unique things. Can we all strive for excellence? Sure – but that’s not the same as everyone doing the same thing. Scale does not have to mean replication. More on this later.

** The Aarhus University (AU) Design Process Model is a specific design process being developed for educational use. The schools were free to use (or not use) this model with students.

Video: Girls (and boys) and STEM

Sylvia Martinez is the guest on this Jan 12, 2017 recording of an interactive webinar with Edtech Interactive dived into the subject of gender and STEM. Hosted by Mitch Weisburgh on a fun platform called Shindig, the session includes several audience members sharing how they encourage diversity and inclusion in their STEM programs.

January 12, Girls (and Boys) and STEM with Sylvia Martinez

Topics:

  • What assumptions are we all making that inhibit girls from pursuing and thriving in STEM careers?
  • How can we take advantage of the differences between male and female approaches, skills, and aptitudes in STEM?
  • How do we strengthen the STEM <–> Playfulness connection?
  • What gender-inclusive practices can we all embrace?

See other EdTech Interactive webinars

FETC session on Girls and STEM – Orlando, January 26, 2017

What’s new for 2017!

Coming soon –

FETC (Orlando) – 2 workshops, 2 sessions and a breakfast keynote for FAME (Floria Association for Media in Education) Jan. 25-27.

Educon 2.9 (Philadephia) – What the E? A Modern Understanding of Engineering in STEAM. Jan 27-29.

EdTech Teacher Innovation Summit (San Diego) – Design, Making, PBL and Leadership (Feb 7)

And soon after that – Victoria (Australia), Hong Kong, Calgary, San Francisco, Denver, Barcelona, Denmark, and who knows what else!

 

 

Makerspace on a shoestring? Yes, but…

sylvia-FETC-makerspace-session
Me waving my hands at my makerspace startup workshop at FETC earlier this year

One of the questions I get asked quite a lot is about budgets for educational makerspaces.  We are doing this on a shoestring, is that OK? We don’t have any money, is it still worth doing?

My first reaction is typical, I think – of course go for it! No one should be prevented from having a great hands-on learning experience because of lack of funds. There are lots of things that can be repurposed and borrowed. In fact, recycling is a hallmark of the “maker mindset.” Doing more with less is a worthy engineering constraint that develops ingenuity and practical skills.

Yes…but…

However, I think there is a “yes… but” that should be understood. When educators are trying to change culture and practices in an organization, it matters that you acknowledge the size of the shift you are trying to accomplish. A bigger shift requires a bigger and more explicit commitment, and having a budget is a visible and commonly understood sign of commitment.

Whether it’s wanting STEM courses to be more inclusive or shifting teaching practices to be to more project-based, it’s about how far you want to go from where you are. You want big changes? Do big things. Of course, it’s not always about money. Your commitment might be towards long-term professional development, but that’s a commitment of time, an even more precious commodity.

But wait, there’s more!  – Want to hear more about making, makerspaces, design, and STEM? Come to FETC in January – I’m leading two workshops and two sessions! 

PBL Gets a “Make”-over: Supercharging Projects with Maker Mindsets and Technology

Maker technology plus PBL

Schools around the world are embracing the idea of authentic hands-on technology-rich projects for students that support all subject areas. Students say these project-based learning (PBL) experiences are powerful and engaging. Teachers agree!

But often there seems to be no time to integrate these experiences into the classroom. Curriculum is overstuffed with facts and assessment tests loom large. How can teachers take the time for “extras” like in-depth projects? When do busy teachers have time to learn about technology that is ever-changing? Several recent trends combine futuristic technology from the maker movement with design thinking – creating experiences that engage and inspire learners in areas that integrate well with curricular expectations.

PBL + Maker

Maker technologies like 3D printing, robotics, wearable computing, programming, and more give students the ability to create real things, rather than simply report about things. They provide onramps to success in STEM and other subjects for students who are non-traditional learners. Students are empowered by mastering difficult things that they care about, and supported by a community that cares about their interests.

These opportunities are not just good because it’s about getting a good grade, but it’s about making the world a better place with technology that is magical and modern. 3D printing is a fantastic learning opportunity because students can work in three dimensions, making geometry and 3D coordinate math come alive. But that’s not all – it’s literally making something out of nothing. It transcends getting the right answer by adding creativity, complexity, and best of all, you get a real thing in the end. For some students, this makes all the difference.

Look for ways to

  • Introduce challenges that are open-ended
  • Solve real problems (student-designed rather than teacher-assigned)
  • Use an iterative design methodology
  • Allow time for mistakes and refinement – there should be time for things that don’t work the first time
  • Support collaboration with experts in and out of the classroom

Maker mindset

Another aspect of the maker movement is the “maker mindset.” Similar to a growth mindset, this is a personal trait valued by makers world-wide. Like MacGyver, the TV show about a tinkering crime-fighter, the maker mindset is more than just persistence. The maker mindset is about being flexible, thinking on your feet, looking for the unconventional answer, and never, ever giving up.

It’s a mistake to think that you can teach students persistence about tasks they don’t care about. That’s not persistence, that’s compliance. When the classroom is about invention and making real things, persistence becomes personal.

Students who experience success on their own terms can translate that to other experiences. Frustration can be reframed as a needed and welcomed step on the path to the answer. Students who figure things out for themselves need teachers to allow a bit of frustration in the process. In the maker mindset, frustration is a sign that something good is about to happen. It’s also an opportunity to step back and think, ask someone else, or see if there is another path. This may be a role shift for teachers who are used to answering student questions quickly as soon as they hit a small speed bump.

Luckily, with maker technology, it changes so rapidly that no one can be an expert on everything! In fact, this rapid evolution may make it easier to adopt the attitude of “if we don’t know, we can figure it out.” This attitude is not only practical, but models the maker mindset for students.

Adding maker technology and the maker mindset to the well-researched and practiced methods of project-based learning is a winning combination! Maker + PBL = Engaging learning opportunities for modern students and classrooms.

Future of Education Technology Conference Blog (crossposted) Article By FETC 2017 Speaker, Sylvia Martinez

–––––––

sylvia martinezSylvia Martinez is the co-author of the book often called the “bible” of the classroom maker movement, “Invent To Learn: Making, Tinkering, and Engineering in the Classroom

To learn more about supercharging PBL with maker mindsets and tools at Sylvia’s FETC workshops or sessions click here. (Get a discount on registration!) FETC is in Orlando, Florida in January, 2016.

Girls and STEM – ISTE 2016 presentation

These are the slides from my ISTE 2016 presentation “Girls & STEM: Making it Happen.”

Martinez girls and stem ISTE 2016 (PDF)

Resources

Maker

Invent To Learn

MakeHers: Engaging Girls and Women in Technology through Making, Creating, and Inventing (Intel infographic)

Power, Access, Status: The Discourse of Race, Gender, and Class in the Maker Movement

Leah Buechley – Gender, Making, and the Maker Movement (video from FabLearn 2013)

Associations

National Girls Collaborative Project (links to many others)

National Council of Women and Informational Technology

American Association of University Women

Unesco International Bureau of Education (IBE)  – Multiple resources such as: Strengthening STEM curricula for girls in Africa, Asia and the Pacific10 Facts about Girls and Women in STEM in Asia

WISE (UK) – campaign to promote women in science, technology, and engineering

My posts about gender issues, stereotype threat, and other topics mentioned in this session

HOW TO COURSE CORRECT STEM EDUCATION TO INCLUDE GIRLS

LET’S STOP LYING TO GIRLS ABOUT STEM CAREERS

Stereotype Threat – Why it matters

Inclusive Makerspaces (article for EdSurge)

What a Girl Wants: Self-direction, technology, and gender

Self-esteem and me (a girl) becoming an engineer

Research

Securing Australia’s Future STEM: Country Comparisons – Australian Council of Learned Academies

Generation STEM:  What girls say about Science, Technology, Engineering, and Math – Girl Scouts of the USA (2012) (Girls 14-17)

Effective STEM Programs for Adolescent Girls: Three Approaches and Many Lessons Learned

Women’s underrepresentation in science: Sociocultural and biological considerations. (2009)

Gresham, Gina. “A study of mathematics anxiety in pre-service teachers.” Early Childhood Education Journal 35.2 (2007): 181-188.

Beilock, Sian L., et al. “Female teachers’ math anxiety affects girls’ math achievement.” Proceedings of the National Academy of Sciences 107.5 (2010): 1860-1863.

Teachers’ Spatial Anxiety Relates to 1st- and 2nd-Graders’ Spatial Learning

Statistics

National Center for Educational Statistics

National Student Clearinghouse Research Center