Is “making” in education a fad or a lasting change?

In part 1 of this two part series, I shared four attributes of ideas about education that successfully become common knowledge. In this post, part 2, the topic is whether making and makerspaces in education are here to stay or whether they will fade in popularity.

According to  From the Ivory Tower to the Schoolhouse: How Scholarship becomes Common Knowledge in Education by Jack Schneider, there are four attributes that are key to educational ideas moving into the mainstream:

  1. Perceived significance
  2. Philosophical compatibility
  3. Occupational realism
  4. Transportability

Read more about these attributes in Part 1 – 4 keys that predict which education ideas will be more than just a fad. The examples used to illustrate these points are:

The current interest in schools in making and makerspaces has many parallels to these examples. Looking at each one of these attributes under a “maker” microscope is an interesting exercise!

Perceived significance

People have to hear about it and believe it’s important. It has to address a timely, significant issue on teacher’s minds. It also has to come from a place that inspires believability. (To be blunt on this last point, prestigious university credentials matter.)

  • The maker movement came at an opportune time for the resurgence of the idea that children learn through hands-on, minds-on experiences. Having popular media create a widespread acceptance that DIY and crafts are modern and futuristic helps with the adoption of this idea.
  • Having multiple, prestigious universities like Stanford, MIT, and Harvard doing research that supports making in education is important. The intellectual pedigree may be seen as elitist, but there is no doubt that it works as shorthand for establishing credibility.
  • It jigsaws with two contemporary concerns without really taking a side:
    1. The current interest in STEM/STEAM education driven by a perceived lack of preparation of today’s youth for jobs in important industries.
    2. The concern that young people do not see school as relevant to their real passions, including wanting to make the world a better place as opposed to making money.

Philosophical compatibility

Educators often complain that scholars don’t have any idea what happens in real classrooms. Scholars complain that educators rely on folk wisdom and tradition rather than research. But when scholarship validates what teachers feel, it has a special resonance.

  • Making is an obvious backlash to the standards and accountability movements of the last 30 years. It gives teachers a concrete way to put their beliefs–-or at least an answer to their nagging doubts–-into practice.
  • The maker movement can be seen through a number of lenses: personal accountability, a new economic engine, techno-centrism, globalism, practical skills, community involvement, ecology, etc. These attributes transfer to making in education, creating a chameleon that takes whatever shape educators and the community desire.
  • Like Bloom’s Taxonomy, the vagueness of “maker education” might be an asset in more widespread adoption.

Occupational realism

The idea has to be easily put into use. It must not require extensive training or major changes to existing structures and practices.

  • This is an ongoing issue for making in education. If it requires a wholesale shakeup in the way a school is run, the subjects that are taught, and the way teachers teach, that is a big lift. It may, like the project method, become an add-on practice.

Seymour Papert often compared the way school reacts to big ideas like the computer as an immune system response. School identifies a foreign idea, overwhelms it, and neutralizes it.

“Previously teachers with a few computers in the classroom were using them to move away from the separation of subject matters, and the breakup of the day. When the administration takes over they make a special room, and they put the computers in that room and they have a computer period with a computer teacher. Instead of becoming something that undermines all these antiquated teachings of school, computers became assimilated. It is inherent in school, not because teachers are bad or schools are bad, but in all organisms that have come to a stable equilibrium state in the world, that they have a tendency to preserve the inertia they have. So school turned what could be a revolutionary instrument into essentially a conservative one. School does not want to radically change itself. The power of computers is not to improve school but to replace it with a different kind of structure.” http://www.papert.org/articles/SchoolsOut.html

Re-read the paragraph above replacing “makerspace” for “computer lab” and “3D printer” (or your favorite maker technology) for “computer.” Has anything changed?

It was certainly a good thing that children got access to computers. But in many schools, students only learned to use computers to take notes, write reports, and look things up–-hardly new ways to learn. Computer labs and computer classes instead resulted in schools being satisfied that they were using modern technology without having to actually change the content or pedagogy of any “regular” class. The computer lab became a misdirection, an excuse for the status quo, rather than a driver of change.

How will it feel, if two years or twenty years from now we look back and say exactly the same thing about makerspaces? That we built them, we tried to integrate making into the curriculum, we thought it would change everything–but nothing happened.

When schools insist that making fit into existing curriculum and subjects, it’s reasonable to agree and to try to create materials that help teachers do that. The risk is twofold: 1. If this doesn’t happen and making is not in the curriculum, it will always be on the outside, not a core need or intent of school and not impacting most students. 2. If we do make it work in the curriculum, it will simply be muted, and gradually absorbed as the school creates a new stable equilibrium without really making any change to the lived experiences of the students.

Either of these choices ends up with nothing really changing.

The other option, as Papert points out, is to replace school with a “different kind of structure.” Is that giving up… or facing reality?

Can educators have their feet pointed in two directions at once–both working to drastically change the system and at the same time, assisting students in the current system to have a better experience? Is “occupational realism” a death sentence for ideas that are truly revolutionary?

Transportability

The research and terminology must be easily understood. It must have both a big idea that can be quickly expressed, and simple parts that support the whole.

  • The good thing about “making” is that it’s an easy word to understand. Students need to do things, and educators can visualize that happening at every grade level, and perhaps with a little help, in every subject area.
  • It embodies the commonly understood ideals of the project method, plus embraces more modern versions like PBL. To that it adds a bundle of futuristic and cool tools to work with.

A note about independent schools

Private independent schools have been early and enthusiastic adopters of making in education. While it is easy to point to these schools having the financial resources to purchase expensive technology, there are deeper reasons that making resonates with independent schools. This was also true of the theory of Multiple Intelligences. In his book, Schneider makes the case that independent schools, primarily elite, non-parochial schools were primary drivers for the popularity of MI.

  • Independent schools are typically more progressive than public schools. MI provided new support for these ideals and scientific language to communicate these progressive ideals to parents and staff.
  • Independent schools are typically freer than public schools to try new approaches and curriculum than public schools. Using MI to recalibrate activities in the classrooms was seen as part of the school mission, not as disruptive.
  • At a time where schools were being called failures and under duress to teach in a more rigorous, standardized way, MI gave independent schools a way to push back on this trend and claim that their progressive methods were scientifically based.
  • As a market-driven organization, independent schools constantly need new things to prove to parents that they are worth the money. MI was an understandable concept, and validated by the  Harvard pedigree, an easy sell to parents.
  • Independent schools have traditionally valued the arts, MI provided a way to say that the arts were not detracting from academics.
  • Independent schools catered to parental expectations that their child would be treated as an individual. MI provided clarity that personalization could be  scientifically based, not just left to chance.

There are certainly noteworthy parallels between MI and the adoption of making and makerspaces in independent schools. It is good to note that in many cases, the adoption of MI in independent schools created examples of practice that made their way into public schools. MI supporters were found in many communities, working to make all schools happier and more humane.

Is “Making” going to stick?

Will making in education have a lasting effect on education, or will it become just another “new new thing” that is overtaken by some newer new thing? It certainly has the perceived significance. Both academic credentials and cultural trends are working in its favor. It has philosophical compatibility with many teachers and parents too. They see children starving in a desert of worksheets and tests and know there must be a better way.

There may be more to worry about in other areas. In some cases it has transportability, especially when using simplified models like Design Thinking. The problem is that simplified models and canned lesson plans are a double-edged sword. As they helps teachers with operational realities, it removes agency from the teacher. Is it inevitable that creating a version of making in education that is widely acceptable will by its nature create unacceptable compromises?

It may be that countries other than the United States hold the answer. American teachers have the least amount of professional preparation time in the world. They participate in less professional development, have less time to plan lessons, and spend less time with colleagues. The US is a large country with a fractured educational governance and dissemination path for educational information. US teachers are underpaid, overworked, and given all these realities, may simply not be in a position to undertake changes.

While educational theorists often talk about wanting to scale good practice, there may be such a thing as “too big to scale,” especially when it comes to complex ideas.

For proponents of making in education, the longevity and widespread adoption of ideas like Multiple Intelligences offers hope that making will become a long-term trend in schools.

Part 1 – 4 Keys to Predicting Lasting Trends in Education

Part 2 – Is Making a Long-term Trend or Just a Fad?

4 keys that predict which education idea will be more than just a fad

Why do some ideas about education become common knowledge, while others don’t? According to  From the Ivory Tower to the Schoolhouse: How Scholarship becomes Common Knowledge in Education by Jack Schneider, there are four key attributes:

  1. Perceived significance
  2. Philosophical compatibility
  3. Occupational realism
  4. Transportability

The book explores educational ideas that made the leap from academia to being something that “every” teacher knows about:

Tracking the history of these ideas as they journeyed from research to practice is a fascinating look not just at education, but also politics, culture, personalities, and pure luck. Contrasting each these ideas with four similar ones that did not receive the same attention makes the case even more compelling.

The 4 characteristics of sticky educational ideas

In part 1 of this blog post, I’ll summarize the four characteristics that are commonly found in ideas that become “sticky” and well known to educators. In part 2, I’ll compare those ideas and practices with the current trend of making and makerspaces in schools. Will “making” be a sticky idea?

1 – Perceived significance: People have to hear about the idea multiple  and believe it’s important. It has to address a timely, significant issue on teacher’s minds. It also has to come from a place that inspires believability. (To be blunt on this last point, prestigious university credentials matter.)

For example, Multiple Intelligence theory helped teachers explain that students who don’t do well in school aren’t simply unintelligent. At a time when school was becoming more standardized (1980s), it was a big picture explanation of how teachers could still meet student needs without really changing curriculum. Coming from Howard Gardner, a respected Harvard professor, meant that it would be listened to, talked about, and taken seriously.

2 – Philosophical compatibility: Educators often complain that scholars don’t have any idea what happens in real classrooms. Scholars complain that educators rely on folk wisdom and tradition rather than research. But when scholarship validates what teachers feel, it has a special resonance.

At the turn of the 20th century, rote learning and recitation were the primary modes of schooling. Many teachers felt that there was more to learning, but were powerless to change the system. William Kilpatrick, on the faculty of Columbia University’s Teachers College wrote about what he called “the project method.” It validated teachers’ feelings that something was wrong. It offered an explanation that made sense, and a way to operationalize that in a classroom.

3 – Occupational realism: The idea has to be easily put into use. It must not require extensive training or major changes to existing structures and practices.

Both Bloom’s taxonomy and MI had occupational realism in that teachers didn’t have to change very much to feel like they were using these scientific methods in their classroom.

In the book’s discussion of “the project method,” the practical application in the classroom was its weakest point. It wasn’t clear how to do it, and even if it was possible, seemed to call for a complete overhaul of chool structures and curriculum. Therefore it was mostly adopted as something that happened every once in a while as an add-on to the curriculum. As time went on, widespread adoption of formulaic projects subverted the power and promise of the idea. The book discusses the spread of the “California Mission Project” as an example. (For those of you not in California, every fourth grader in California builds a model of a Spanish mission, and has for decades.) The poor implementation of the project method on its way to occupational realism was the price paid for its widespread acceptance and endurance.

The review of why Direct Instruction became so widespread is especially interesting. It violates the second principle of “philosophical compatibility” because many teachers do not believe in scripted curriculum. However, at the time (late 1960s), political pressure for accountability and cost reductions required a curriculum that did not need a highly trained professional, yet produced increased standardized test scores. Despite complaints that students were being treated like trained animals, politics and budget cuts overwhelmed that objection.

DI solved multiple problems. It made it easier to spend less on teacher training and teacher salaries, increased test scores, allowed larger class sizes, and satisfied the “back to basics” movement all at the same time. The occupational realism of Direct Instruction was above all, institutional and political, rather than classroom centered.

4 – Transportability: The research and terminology must be easily understood. It must have both a big idea that can be quickly expressed, and simple parts that support the whole.

Bloom’s Taxonomy started off as an assessment scheme, a way to be more objective by defining different kinds of questions for students to answer. It quickly leaked out of assessment, as educators applied the structure to every part of the educational process from planning onwards, taking Bloom’s into a whole new area for which it had not been intended.

As time went on, the original complex definitions were simplified and recast as a pyramid that implied a progression from bottom to top. Teachers started seeing the drawing of the pyramid everywhere in their professional lives, and every instance reinforced the idea that it was reliable. This cycle of positive reinforcement-–of exposure validating reliability, and so in turn creating more exposure–-is typical of ideas that gain traction.

Original Bloom’s Taxonomy

Fifty years before Bloom, MI, and DI, “the project method” found its way to millions of teachers. It had a persuasive and tireless advocate in William Kilpatrick, from Columbia University’s Teachers College. He was an ambitious academic who wanted more than just scholarly fame. He convinced the publication Teachers College Record to publish his article, “The Project Method” and give it away for free to teachers. Sixty thousand copies were printed and distributed nationwide. Thousands of subsequent papers and articles were written about the project method and its application to all grade levels and subjects.

Although not a new idea, Kilpatrick wrote in a clear and less formal manner than many academics, including his teacher and mentor John Dewey. Kilpatrick was also genuinely interested in real classrooms. While some of his colleagues complained that he was a self-promoter tarnishing the reputation of academia, the results spoke for themselves.

The project method made such an inroad into teacher education in the first half of the 20th century that it became a part of every teacher’s classroom practice up to this day. The resurgence of various project methods in the 1960’s and 70’s (PBL, The Project Approach, etc) simply built on this collective consciousness of the idea from a half century earlier.

The project method became so popular that “project” became a term of art, not a specific method tied to one person. One can only assume that Professor Kilpatrick would be a bit miffed by this.

Ideas make their way into the world

The book creates a case that one of the reasons that most of these ideas took hold was that they were both specific and general at the same time. They also had a wide variety of interpreters and promoters who helped spread the message.

Bloom’s Taxonomy gave teachers a new way to look at classroom practice, yet didn’t require any particular belief or theory of pedagogy to implement. If you were progressive, it matched your understanding that growth is at least as important as learning specific facts. If you were more of a traditionalist, it provided a path from content to deeper understanding. The lack of opposition was an opportunity for it to spread widely. Everyone saw what they wanted reflected in an idea from a highly respected source. Schneider says the taxonomy was, “… an idea that somehow had the power to generate multiple constituencies without sparking opposition.”

Various providers of professional development created materials that further examined Bloom’s Taxonomy and provided specific curriculum and lesson planning advice. For the time, Bloom was remarkably open about supporting various groups, authors, and companies to interpret his work. These satellite disseminators made it easier to access the work, and even though some complained that it was misinterpreted or diluted, it was widely spread. These providers helped the idea gain the operational realism that it lacked in earliest incarnations. They answered the question — What would a teacher DO exactly, in a classroom where Bloom’s Taxonomy was a driving idea?

What does this mean for today’s ideas about making in education?

In part 2 of this post, I’ll take a look at how “making” in education aligns with these four traits.

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Moment(us) teaching

At Constructing Modern Knowledge 2016, Carla Rinaldi, president of Reggio Children, gave an impassioned talk to the gathered educators about the lessons of the Reggio Emilia pre-school approach.
carla rinaldi cmk2016

She spoke about love, beauty, and respect for children (of all ages) and their learning process. She showed some photos and videos of children learning together and how teachers have the opportunity to make small decisions in this process. To watch or intervene; to ask a question or remain quiet; to suggest an expansion of the complexity of the children’s investigation or to help them simplify their ideas.

What struck me is how quietly these moments happen. These momentous moments are the heart and art of teaching.  Not only is this skill too often devalued and disrespected, but the time it takes to listen is dismissed as “wasted.”

Momentous is a word that is usually associated with BIG EVENTS, but the heart of the word is moment — a fleeting second of time where teachers make decisions that are not simple or fleeting.

Too often overlooked and underestimated, the moment occurs only when listening is valued, when respect exists between all the participants, and there is time to slow down and think hard about what to do in that moment.

Before you “do a makerspace” – four considerations

When we talk about making, there is a tendency to overlap our terms, like saying we’re going to “do makerspace”. I think unpacking these terms help uncover underlying assumptions, especially when designing new spaces and learning opportunities. I see this as four distinct aspects that work together:

  1. Place – Makerspace, hackerspace, Fab Lab, Techshop, shop, science lab, open classroom, studio
  2. Culture – Maker movement, hacker culture, craft, green, economic self-determinism, service-learning, artisanal, amateur science, citizen science, urban agriculture, slow food
  3. Process – Making, tinkering, Design Thinking, design, Genius Hour, PBL
  4. Underlying belief about teaching & learning – Instructionism, behaviorism, constructivism, constructionism

By looking at these four aspects, we can untangle some of the confusion about what “making” in education is. These can combine in interesting ways – you can have a Design Thinking program that is strongly teacher directed in a makerspace that has a green eco-streak that permeates the projects. The place doesn’t dictate the process, which is good and bad.

Many times, when designing new learning opportunities or spaces it is assumed that their current culture will transform as well. Space planning doesn’t magically transform pedagogy. You can’t assume that just because you build a flexible space with terrific materials, it will magically be filled with wonderful student-centered, open-ended projects.

Here’s a “cheat sheet” for the four aspects.

Place

Both formal (credit-bearing courses, primarily at schools) and informal (extra-curricular activities, clubs, libraries, museums, community organizations, commercial spaces)

  • Hackerspace – “Hacking” indicates both an activity and political belief that systems should be open to all people to change and redistribute for the greater good. (roots in the 1960’s). More prevalent in Europe than US.
  • Makerspace – MAKE magazine (2005 – present). Popular Science for the 21st century. DIY and DIWO. Maker Faires. Adopted as a softer, safer alternative to hackerspace. Can be a separate room or integrated into classrooms.
  • Fab Lab – Spaces connected to the MIT Center for Bits and Atoms (565 worldwide) with a common charter and specific requirements for space and tools. Fablab also used as a generic nickname for any fabrication lab.
  • TechShop (and others) – non-profit or commercial organizations offering community tool sharing, classes, or incubation space.
  • Shop, science lab, classroom, studio – traditional names for school spaces for learning via hands-on activities.

Culture

  • Maker movement – technology-based extension of DIY culture, incorporating hobbyist tools to shortcut a traditional (corporate) design and development process, and the internet to openly share problems and solutions. Maker mindset – a positive, energized attitude of active tinkering to solve problems, using any and all materials at hand.
  • Hacker/hacking – Essential lessons about the world are learned “..from taking things apart, seeing how they work, and using this knowledge to create new and even more interesting things.” – Steven Levy
  • Green – values of ecology, conservation, and respect for the environment.
  • Citizen/amateur science – participation of non-professional scientists in gathering and interpreting data or collaborating in research projects.
  • Artisanal/craft movements – engaging in mindful and ethical practices to humanize activities, products, and production.

Process

  • Making – the act of creation. “Learning by making happens only when the making changes the maker.” – Sylvia Martinez
  • Tinkering – non-linear, iterative approach to reaching a goal. “messing about” with materials, tools, and ideas. “Making, fixing, and improving mental constructions.” – Seymour Papert
  • Design Thinking – customer-centered product design and development process popularized by IDEO and the Stanford d.school
  • Design – “to give form, or expression, to inner feelings and ideas, thus projecting them outwards, making them tangible.” – Edith Ackermann
  • Genius Hour – specific classroom time devoted to tinkering and open-ended projects. Patterned after companies (Google and FedEx, primarily) that allow employees to work on non-company projects on company time, thereby boosting morale and possibly resulting in products useful to the company.
  • Project-based Learning (PBL) – Projects are…“work that is substantial, shareable, and personally meaningful.” – Martinez & Stager

Beliefs about teaching and learning

  • Instructionism – Belief that learning is the result of teaching. Lecture, direct instruction.
  • Behaviorism – Belief that behavior is a result of reinforcement and punishment. Rote learning, worksheets, stars/stickers, grades.
  • Constructivism – Piagetian idea that learning is a personal, internal reconstruction—not a transmission of knowledge. Socratic method, modeling, manipulatives, experiments, research, groupwork, inquiry.
  • Constructionism – Seymour Papert extended constructivism with the idea that learning is even more effective when the learner is creating a meaningful, shareable artifact. PBL, making, citizen science.

What does “making” have to do with learning?

Learning is an engagement of the mind that changes the mind.

—Martin Heidegger

One of the biggest issues I have with many descriptions of “making” in education is that it’s about students just being creative with tools or materials.  I strongly disagree. Making is not just the simple act of you being the difference between raw materials and finished product, as in “I made dinner” or even “I made a robot.” I don’t think we always need to ascribe learning to the act of making — but the act of making allows the maker, and maybe an outsider (a teacher, perhaps) to have a window into the thinking of the maker.

So, do you always need a teacher for learning to happen? No. Some people are good at thinking about their own process and learning from that (“Wow, that butter made the sauce so much better.” “Next time, I’ll test the circuit before I solder.”) and some people are less likely to do that. But if I watch you cook, I will see certain things – how you organize your ingredients, how you react when you make a mistake, how you deal with uncertainty — and that is what teaching is about. A teacher who is a careful observer can see these kinds of signs, and then challenge the learner with harder recipes, a question to make them think, more interesting ingredients, or a few tips — all with an eye towards helping the other person learn and grow.

Technology like Arduinos and 3D printers have not become intertwined with the maker movement in education simply because they are new, but because they are some of the most interesting ingredients out there. Many of these “maker materials” rely on computational technology, which supports design in ways not possible otherwise. The command “Save As..” is possibly the most important design tool ever invented. Saving your design file or code means you can “do again” without “doing over,” supporting the iterative process and encouraging increasingly complex designs.

Complex technology, especially computational technology also allows educators to answer the question, “Isn’t this just arts and crafts?” And of course after defending arts and crafts – we can say that computational technology allows these same mindful habits to connect with the powerful ideas of the modern world that we hope children learn. Design and making are not just important for the A in STEAM, they are essential, but here’s a bigger idea, they are also essential for the T & E — and for them all to come together.

There is simply no technology without design; the definition of the word is literally “things in the designed world.” Making is a way to realize the “logo” part of the word – from the Greek word (logos) that means “word” but specifically words that express the order and reason of the universe. To Greek philosophers, a word was more than a sound or a mark, it was the embodiment of an idea — an idea made real. And yes, the Logo programming language owns this derivation as well.

The power of using computational technology in education is that the versatility and transparent complexity allows learners to make their ideas real, to make sense of the world, and to see their own capacity grow. This visible process also allows teachers to support and scaffold learners on their journey.

Learning by making happens only when the making changes the maker.

How to teach coding

Or how NOT to teach coding.

I get a lot of email asking me to look at various computer programming lesson plans and curriculum. “Is it good? Should I use this?” people ask. Some people want me to endorse something, “We’ve created something the kids will love! It’s so maker!”

So let me share one secret, the very first thing I do when I click the link of whatever comes next in the email. I look at the first thing, the very first thing the kids are supposed to do. If lesson number one is bits, bytes, and binary arithmetic, I’m done.

Yes it’s that simple. (You may find it amusing that my decision-making process is so binary.) But it’s what poker players call a “tell.” It shows that they’ve resorted to the “building blocks” theory of learning. It shows that they’ve looked at lots of other programming lessons and that’s where everyone else starts. It ignores constructionist learning theory that the experience is the place to start.

In our book, Invent To Learn: Making, Tinkering, and Engineering in the Classroom, we begin every chapter with a quote. One of my favorites is:

If you want to build a ship, don’t drum up people to collect wood and don’t assign them tasks and work, but rather teach them to long for the endless immensity of the sea.  – Antoine de Saint-Exupery

The Project Approach – a project-based-learning framework

The EKWQ framework was developed by Sylvia Chard, a leading project-based-learning expert and author of The Project Approach. This chart summarizes the EKWQ framework.

EKWQ – Experience, Knowledge, Wonder, and asking Questions

A Framework to Start the Project Process

EKWQ builds on student experience to generate authentic student interest in a topic, shared knowledge, and practice in exploring the known parts of a topic before tackling the unknowns.

Strategy

Teacher’s Role

Students

Examples: what students do

Experience Ethnographer – learn what students already know through observation Share & represent existing experiences with topic. Tell stories, write, draw, make paintings and collages, make clay models, construct with blocks, role play, etc.
Knowledge Support student activities and encourage deeper explanations. Deepen prior knowledge and develop expertise Interview/survey each other, take notes, collect data. Represent the collected research in charts and graphs. Develop theories.
Wondering Coordinate work to develop collective understandings and research process Learn what other students know and explore differences. Share expertise. Draw conclusions and explore areas of interest, unknowns, and curiosity.
Ask Questions Articulate – Help students turn “wonders” into driving questions Develop driving questions for projects. Create lists of questions. Brainstorm ideas and consolidate.

Note: KWL (a popular instructional planning tool used to create charts of “what we Know”, “what we Want to know”, and “what we Learned”) may sound similar. However, Chard notes that KWL was designed for instruction centered on reading of texts and is not enough for a project, and worse, KWL can inhibit the development of student interest.

Read more about The Project Approach.

ISTE 2015: Ready for Making?

ISTE 2015 will be June 27-July 1 in Philadelphia, PA. This is an annual “big event” for technology loving educators, with upwards of 15,000 attendees and a huge vendor floor for new edu-gizmos and gadgets.

Two years ago, the word “maker” was barely found on the ISTE program. I believe that my session and Gary Stager’s were the only ones! But in recent years, more and more educators have found that the mindset of the “maker movement” resonates with them. New materials can invigorate project-based learning, and the global maker community is a vibrant learning space that inspires and surprises.

This year’s schedule has a wide array of opportunities to learn more or get started with “making” in the classroom. There’s even a search filter for the topic. Select “Constructivist Learning/ Maker Movement” and 63 sessions, posters, and workshops appear! That’s like a billion trillion percent increase over a couple of years (I swear! Do the math! OK… maybe I’m exaggerating, but it’s because I’m excited this is getting so much attention.)

Search for yourself (select from the Focus/Topic on the left)

So, no need for me to make a list of all these sessions like I’ve done in past years – but here are my and Gary’s events at ISTE. Come find me and say hi!

My events and sessions

Sunday June 28

** Update – SOLD OUT – sorry! 🙁 ** – Gary Stager and I will be hosting a day called “Making, Learning, Fun!” from 9AM – 3PM at Maggiano’s Little Italy (2 blocks from the Conference Center) with fabulous maker activities, great food, and a free copy of the new book “The Invent to Learn Guide to Fun”.  Don’t miss out – very limited space! Click here.

Monday June 29

The Maker Movement: A Global Revolution Goes to School Monday, June 29, 2:30–3:30 pm Sylvia Martinez  PCC Ballroom A

LOL@ISTE Again: Yes, This Will Be on the Test! Monday, June 29, 8:30–9:30 am Cathie Norris, Elliot Soloway, Gary Stager, Michael Jay, Saul Rockman, Sean McDonough

Making, Love and Learning Monday, June 29, 11:00 am–12:00 pm Gary Stager

Is It Time to Give Up on Computers in Schools? Monday, June 29, 12:45–1:45 pm Audrey Watters, David Thornburg, Gary Stager, Wayne D’Orio, Will Richardson

Tuesday June 30

Girls & STEM: Making it Happen Tuesday, June 30, 4:00–5:00 pm Sylvia Martinez PCC Ballroom B

Mobile Learning Playground: Block Party at the Makerspace Tuesday, June 30, 9:30 am–1:00 pm
I’ll be there from 11AM – 11:30 AM talking about “Getting Started with Making in the Classroom”

See you there!

New report: Making and Tinkering: A Review of the Literature

A new literature review was just released by the Board of Science Education (an NSF funded program associated with the National Academies) called:

Making and Tinkering: A Review of the Literature, by Shirin Vossoughi and Bronwyn Bevan (The PDF is linked from a list, click here and scroll down)

The Board of Sciences has commisioned this and several other papers focused on informal and afterschool STEM learning. More information and links to the other papers are on their website.

The paper is a goldmine of research supporting tinkering and making activities that support learning – not just in STEM and not just in informal settings. Paulo’s research, Papert, and Leah Buechley’s FabLearn 2013 speech are all referenced (and my book too!)

The list of the other commissioned papers is interesting as well. All the papers are linked from this site.

Commissioned Papers

Formative Assessment for STEM Learning Ecosystems: Biographical approaches as a resource for research and practice by Brigid Barron

Citizen Science and Youth Education by Rick Bonney, Tina B. Phillips, Jody Enck, Jennifer Shirk, and Nancy Trautmann

Evidence & Impact: Museum-Managed STEM Programs in Out-of-School Settings, by Bernadette Chi, Rena Dorph & Leah Reisman

Children Doing Science: Essential Idiosyncrasy and the Challenges of Assessment by David Hammer and Jennifer Radoff

Broadening Access to STEM Learning through Out-of-School Learning Environments by Laura Huerta Migus

Making and Tinkering: A Review of the Literature, by Shirin Vossoughi and Bronwyn Bevan