Back to school, back to making!

back to schoolYou may have heard that it’s best to “ease” into hands-on project-based learning at the start of the school year. Maybe you feel your students aren’t ready, need some skills development, or just need to have a few weeks of settling down before getting started with more independent work.

I think this is a big mistake.

Why? Two reasons: habits are formed and messages matter starting day one.

If you are looking at making and makerspace activities as a way to give students more agency over their own learning, why not start building those habits immediately to send that message early and often.

Many teachers feel that they have students who aren’t ready for a more independent approach to learning. However, how will they get ready if they don’t practice it? Many teachers say that students have to be “unschooled” out of practices like constantly expecting to be told what to do. So why not start to build those habits and expectations on day one?

That doesn’t mean that you have to start with a monumental project. Start with something small. Shorter, more contained projects will build their confidence and skills. Mix these projects with less structured time to explore, invent, and tinker. If it’s chaos, you can add some constraints, but don’t give up!

Empowering students to believe in themselves as capable of making things that matter, both in the physical and digital world, is a crucial part of learning.

The message is also going home to parents every day — what they expect to see all year starts today. Explain what you are doing and why, and reinforce that with every communication with parents.

So whatever you call it, making, project-based learning, hands-on, or inquiry learning – the time to start is always NOW!

PBL Gets a “Make”-over: Supercharging Projects with Maker Mindsets and Technology

Maker technology plus PBL

Schools around the world are embracing the idea of authentic hands-on technology-rich projects for students that support all subject areas. Students say these project-based learning (PBL) experiences are powerful and engaging. Teachers agree!

But often there seems to be no time to integrate these experiences into the classroom. Curriculum is overstuffed with facts and assessment tests loom large. How can teachers take the time for “extras” like in-depth projects? When do busy teachers have time to learn about technology that is ever-changing? Several recent trends combine futuristic technology from the maker movement with design thinking – creating experiences that engage and inspire learners in areas that integrate well with curricular expectations.

PBL + Maker

Maker technologies like 3D printing, robotics, wearable computing, programming, and more give students the ability to create real things, rather than simply report about things. They provide onramps to success in STEM and other subjects for students who are non-traditional learners. Students are empowered by mastering difficult things that they care about, and supported by a community that cares about their interests.

These opportunities are not just good because it’s about getting a good grade, but it’s about making the world a better place with technology that is magical and modern. 3D printing is a fantastic learning opportunity because students can work in three dimensions, making geometry and 3D coordinate math come alive. But that’s not all – it’s literally making something out of nothing. It transcends getting the right answer by adding creativity, complexity, and best of all, you get a real thing in the end. For some students, this makes all the difference.

Look for ways to

  • Introduce challenges that are open-ended
  • Solve real problems (student-designed rather than teacher-assigned)
  • Use an iterative design methodology
  • Allow time for mistakes and refinement – there should be time for things that don’t work the first time
  • Support collaboration with experts in and out of the classroom

Maker mindset

Another aspect of the maker movement is the “maker mindset.” Similar to a growth mindset, this is a personal trait valued by makers world-wide. Like MacGyver, the TV show about a tinkering crime-fighter, the maker mindset is more than just persistence. The maker mindset is about being flexible, thinking on your feet, looking for the unconventional answer, and never, ever giving up.

It’s a mistake to think that you can teach students persistence about tasks they don’t care about. That’s not persistence, that’s compliance. When the classroom is about invention and making real things, persistence becomes personal.

Students who experience success on their own terms can translate that to other experiences. Frustration can be reframed as a needed and welcomed step on the path to the answer. Students who figure things out for themselves need teachers to allow a bit of frustration in the process. In the maker mindset, frustration is a sign that something good is about to happen. It’s also an opportunity to step back and think, ask someone else, or see if there is another path. This may be a role shift for teachers who are used to answering student questions quickly as soon as they hit a small speed bump.

Luckily, with maker technology, it changes so rapidly that no one can be an expert on everything! In fact, this rapid evolution may make it easier to adopt the attitude of “if we don’t know, we can figure it out.” This attitude is not only practical, but models the maker mindset for students.

Adding maker technology and the maker mindset to the well-researched and practiced methods of project-based learning is a winning combination! Maker + PBL = Engaging learning opportunities for modern students and classrooms.

Future of Education Technology Conference Blog (crossposted) Article By FETC 2017 Speaker, Sylvia Martinez

–––––––

sylvia martinezSylvia Martinez is the co-author of the book often called the “bible” of the classroom maker movement, “Invent To Learn: Making, Tinkering, and Engineering in the Classroom

To learn more about supercharging PBL with maker mindsets and tools at Sylvia’s FETC workshops or sessions click here. (Get a discount on registration!) FETC is in Orlando, Florida in January, 2016.

Before you “do a makerspace” – four considerations

When we talk about making, there is a tendency to overlap our terms, like saying we’re going to “do makerspace”. I think unpacking these terms help uncover underlying assumptions, especially when designing new spaces and learning opportunities. I see this as four distinct aspects that work together:

  1. Place – Makerspace, hackerspace, Fab Lab, Techshop, shop, science lab, open classroom, studio
  2. Culture – Maker movement, hacker culture, craft, green, economic self-determinism, service-learning, artisanal, amateur science, citizen science, urban agriculture, slow food
  3. Process – Making, tinkering, Design Thinking, design, Genius Hour, PBL
  4. Underlying belief about teaching & learning – Instructionism, behaviorism, constructivism, constructionism

By looking at these four aspects, we can untangle some of the confusion about what “making” in education is. These can combine in interesting ways – you can have a Design Thinking program that is strongly teacher directed in a makerspace that has a green eco-streak that permeates the projects. The place doesn’t dictate the process, which is good and bad.

Many times, when designing new learning opportunities or spaces it is assumed that their current culture will transform as well. Space planning doesn’t magically transform pedagogy. You can’t assume that just because you build a flexible space with terrific materials, it will magically be filled with wonderful student-centered, open-ended projects.

Here’s a “cheat sheet” for the four aspects.

Place

Both formal (credit-bearing courses, primarily at schools) and informal (extra-curricular activities, clubs, libraries, museums, community organizations, commercial spaces)

  • Hackerspace – “Hacking” indicates both an activity and political belief that systems should be open to all people to change and redistribute for the greater good. (roots in the 1960’s). More prevalent in Europe than US.
  • Makerspace – MAKE magazine (2005 – present). Popular Science for the 21st century. DIY and DIWO. Maker Faires. Adopted as a softer, safer alternative to hackerspace. Can be a separate room or integrated into classrooms.
  • Fab Lab – Spaces connected to the MIT Center for Bits and Atoms (565 worldwide) with a common charter and specific requirements for space and tools. Fablab also used as a generic nickname for any fabrication lab.
  • TechShop (and others) – non-profit or commercial organizations offering community tool sharing, classes, or incubation space.
  • Shop, science lab, classroom, studio – traditional names for school spaces for learning via hands-on activities.

Culture

  • Maker movement – technology-based extension of DIY culture, incorporating hobbyist tools to shortcut a traditional (corporate) design and development process, and the internet to openly share problems and solutions. Maker mindset – a positive, energized attitude of active tinkering to solve problems, using any and all materials at hand.
  • Hacker/hacking – Essential lessons about the world are learned “..from taking things apart, seeing how they work, and using this knowledge to create new and even more interesting things.” – Steven Levy
  • Green – values of ecology, conservation, and respect for the environment.
  • Citizen/amateur science – participation of non-professional scientists in gathering and interpreting data or collaborating in research projects.
  • Artisanal/craft movements – engaging in mindful and ethical practices to humanize activities, products, and production.

Process

  • Making – the act of creation. “Learning by making happens only when the making changes the maker.” – Sylvia Martinez
  • Tinkering – non-linear, iterative approach to reaching a goal. “messing about” with materials, tools, and ideas. “Making, fixing, and improving mental constructions.” – Seymour Papert
  • Design Thinking – customer-centered product design and development process popularized by IDEO and the Stanford d.school
  • Design – “to give form, or expression, to inner feelings and ideas, thus projecting them outwards, making them tangible.” – Edith Ackermann
  • Genius Hour – specific classroom time devoted to tinkering and open-ended projects. Patterned after companies (Google and FedEx, primarily) that allow employees to work on non-company projects on company time, thereby boosting morale and possibly resulting in products useful to the company.
  • Project-based Learning (PBL) – Projects are…“work that is substantial, shareable, and personally meaningful.” – Martinez & Stager

Beliefs about teaching and learning

  • Instructionism – Belief that learning is the result of teaching. Lecture, direct instruction.
  • Behaviorism – Belief that behavior is a result of reinforcement and punishment. Rote learning, worksheets, stars/stickers, grades.
  • Constructivism – Piagetian idea that learning is a personal, internal reconstruction—not a transmission of knowledge. Socratic method, modeling, manipulatives, experiments, research, groupwork, inquiry.
  • Constructionism – Seymour Papert extended constructivism with the idea that learning is even more effective when the learner is creating a meaningful, shareable artifact. PBL, making, citizen science.

Putting Away the Books to Learn

Bright.com (the education section of Medium.com)  has published an article called Putting Away the Books to Learn by Jackie Ashton.

It starts with the question: “The “maker” movement has swept across schools in California and beyond. Can it fundamentally change K-12 education?”

The article profiles several schools involved in “making” and quotes some folks, including me, about how “making” has the potential to change education. Most of my interview ended up on the cutting room floor, unfortunately. But that’s the way the media cookie crumbles, as they say!

It’s an interesting take on “making” and the article struggles a bit, I think, to situate it in a learning context. Not that I’m surprised or criticizing. It’s the heart of the difficulty of advocating for “maker education” – the examples start to sound like you are cheerleading for any techy type thing that kids put their hands on, whether it’s thoughtful, challenging, academic or not.

Even the title “Putting Away the Books to Learn” is a misinterpretation of the kind of classroom experience I advocate for. In a maker-enabled learning space, books and reference materials (both online and physical) should be one of the most important tools available to students.

For example, at our summer institute, Constructing Modern Knowledge, we bring cases of books to build a library for participants. We believe that this highly-curated library is one of the most important aspects of creating a model maker learning experience. Books can inspire and inform, or sometimes just provide a coffee-break for a tired brain.

Maker education is not an either/or choice between old-fashioned and new-fangled stuff. It’s grounded (hopefully) in ideas about the ways learning really happens inside the learner’s head. Beyond that, there are definitely some technologies that can enhance the quest to teach students about the real world, but to me, the “stuff” should take a backseat to the learning.

  • Can you do “maker” without a 3D printer? Yes
  • Can you do things with a 3D printer that give students access to ideas otherwise nearly impossible? Yes

Both of these can be true, and that may seem confusing. But I think the possibilities inherent in all these seemingly contradictory paths are worth exploring. There is no one model of maker education that is going to work for every learning space and every learner. That should be seen as freedom to be nurtured, not a deficiency.

The Project Approach – a project-based-learning framework

The EKWQ framework was developed by Sylvia Chard, a leading project-based-learning expert and author of The Project Approach. This chart summarizes the EKWQ framework.

EKWQ – Experience, Knowledge, Wonder, and asking Questions

A Framework to Start the Project Process

EKWQ builds on student experience to generate authentic student interest in a topic, shared knowledge, and practice in exploring the known parts of a topic before tackling the unknowns.

Strategy

Teacher’s Role

Students

Examples: what students do

Experience Ethnographer – learn what students already know through observation Share & represent existing experiences with topic. Tell stories, write, draw, make paintings and collages, make clay models, construct with blocks, role play, etc.
Knowledge Support student activities and encourage deeper explanations. Deepen prior knowledge and develop expertise Interview/survey each other, take notes, collect data. Represent the collected research in charts and graphs. Develop theories.
Wondering Coordinate work to develop collective understandings and research process Learn what other students know and explore differences. Share expertise. Draw conclusions and explore areas of interest, unknowns, and curiosity.
Ask Questions Articulate – Help students turn “wonders” into driving questions Develop driving questions for projects. Create lists of questions. Brainstorm ideas and consolidate.

Note: KWL (a popular instructional planning tool used to create charts of “what we Know”, “what we Want to know”, and “what we Learned”) may sound similar. However, Chard notes that KWL was designed for instruction centered on reading of texts and is not enough for a project, and worse, KWL can inhibit the development of student interest.

Read more about The Project Approach.

What does making in the classroom look like?

The 2014/2015 FabLearn Fellows cohort is a diverse group of 18 educators and makers. They represent eight states and five countries, and work with a wide range of ages at schools, museums, universities and non-profits. Throughout the course of the year, they will develop curriculum and resources, as well as contribute to current research projects. Their blogs represent their diverse experience and interests in creating better educational oportunities for all.
 I’ve been privileged to mentor this group this past year and part of that is summarizing their amazing blog posts. Here are some recent highlights from April 2015.

 My Visit to the ‘Iolani School

Jaymes Dec spent Spring Break  visiting The ‘Iolani School, a K-12 school in Honolulu, Hawaii. Jaymes shares their innovative approach to student-centered project-based learning, shops and makerspaces, and classroom integration.

Fostering a Constructionist Learning Environment, the Qualities of a Maker-Educator 

Creating and equipping a makerspace is just the start of changing education to a “maker” mindset. Christa Flores offers five qualities and behaviors for teachers that help  foster a constructionist learning environment.

FabLab and Its Learning Dynamic  (Part 1) &  (Part 2)

In the first two posts of a five part series, Nalin Tutiyaphuengprasert explores the roots of the current FabLab or “maker” trend of today, situated in the constructionism that Seymour Papert first articulated in the 1980’s.

  • Part 1 discusses the classroom – not just the physical setting, but the freedom and richness of the environment.
  • Part 2 explores the personal relationships and the learning dynamic – the assets at the heart of a maker classroom.

Earth Day- Free Upcycling Curriculum 

 In honor of Earth Day, Mark Schreiber contributes a free set of curriculum resources to lead students through a design process using hard to recycle materials. The curriculum covers recycling and waste investigations, materials research, engineering and design. It includes activity guides and lesson plans.

Maker research: instruments for efficacy and visual spatial skills

by Sylvia Martinez

One of the challenges of trying to incorporate more hands-on, authentic activities in schools is assessment. Schools not used to authentic assessment see it as subjective and unreliable. So the search for validated instruments, those that can be shared and compared, is vital. This post shares the work of Shaunna Smith, Ed.D. an Assistant Professor of Educational Technology at Texas State University in this area.

Is “Design Thinking” the new liberal arts?

Is ‘Design Thinking’ the New Liberal Arts? (Chronicle of Higher Education)

Short answer: NO

Long answer: First, I hate the fact that this article is not available publicly, because it might be interesting to actually read. And it’s totally not fair for me to critique it based simply on the headline. That out of the way, let me expand on the short answer. No, “design thinking” isn’t the new liberal arts.

How about this headline, “Is this Harvard course on Jane Austen the new liberal arts?” or “Right triangles – the new geometry?”

That’s not to say that Jane Austen and right triangles aren’t interesting things to study and students could certainly go deeper than current curriculum practices tend to do. But let’s be clear. Design thinking is a way to “schoolify” the process of design, and to focus on a narrow slice of product design.

Now – you can tell me that this school or that curriculum gets design thinking “right” and I’d probably agree. A teacher who cares about design and has agency over his or her classroom can take the process of design thinking and do amazing things. (See Design Thinking, Computational Thinking, and Making in the Classroom – Good, Bad, Worse for my thoughts on this.)

Unfortunately, a lot of design thinking goes back to school dressed up in way too much process – too much planning, too teacher-managed and teacher-directed, too focused on “the market” as a driver, too much delivering a report “about” a product, and not enough actual doing.

It’s human nature to look for the new new thing. And I heartily applaud teachers looking beyond the back of the textbook for things that engage students fully – head, heart, and hands. I suspect that the willingness to try new things as a teacher is the best indication of the thing’s actual potential as a game changer.

Hopefully this headline was followed up by a more nuanced article – it could happen!

 

Podcast: The Maker Movement – The Promise and Pitfalls

Click here to listen to the podcast

At ISTE 2014, Ginger Lewman and I recorded a podcast hosted by Don Wettrick called InnovatED – Tomorrow’s Education Innovations Today, on the BAM Radio Network.

We talked about the connection between project-based learning and the Maker Movement, best practices, and potential pitfalls. Plus had a ton of fun! Take a listen 😉


The Maker Movement:The Promise and Pitfalls
Sylvia Martinez is co-author of Invent To Learn: Making, Tinkering, and Engineering the Classroom, a book that has been called the “bible of the maker movement for classrooms”. She speaks and writes around the world to advocate for authentic learning using real world design principles, modern technology, and hands-on experiences. Ginger Lewman, @GingerLewman, works at ESSDACK, a nonprofit educational service center. She is a Keynoter & Consultant; Google Certified Teacher; Silo Killer; Co-Creator Life Practice PBL and a teacher of Project Based Learning.

Click here to listen to the podcast

 

controls_toggle

 

Back to School with Making in the Classroom – Should I start now or wait?

You may have heard that it’s best to “ease” into hands-on project-based learning at the start of the school year. Maybe you feel your students aren’t ready, need some skills development, or just need to have a few weeks of settling down before getting started with more independent work.

Good teachers know that students learn a lot more when they get their hands on real materials, and get to do their own projects and experiments. But sometimes we get frustrated thinking about the students who won’t cooperate, don’t clean up, waste materials, or misbehave during our hands-on learning time. In my work as a science teacher and coach, I’ve seen teachers who decide to delay lab activities until behavior is rock-solid. Instead of starting off with a bang, they tiptoe toward inquiry learning.

from Teacher Magazine: Teaching Secrets: How to Maximize Hands-On Learning.

The author, Anthony Cody is an award-winning science teacher, and this article has some great ideas, tips and practical suggestions for all grades and subject areas. He goes on:

My experience is in science, but many teachers of social studies, English, math, and other subjects also have great success with hands-on, minds-on activities. I’d bet some of my colleagues in these other content areas also feel the urge to keep kids in lockdown mode until full teacher authority has been established.

I think this is a big mistake.

Here are his reasons:

  • You need to lead with your best foot.
  • When you introduce cool activities the first few weeks, you are setting the stage for an exciting year.

Be sure to read his full explanation and tips for getting the school year started off right with hands-on. Teaching Secrets: How to Maximize Hands-On Learning.

I’m also sure that many teachers feel that they have students who aren’t “ready” for a more independent approach to learning. However, how will they get ready if they don’t practice it? Many teachers tell me that students have to be “unschooled” out of practices like constantly expecting to be told what to do. So why not start to build those habits and expectations on day one?

That doesn’t mean that you have to start with a monumental project. Start with something small. Give the students time to explore, invent, and tinker sooner rather than wait. If it’s chaos, you can add some constraints, but don’t give up! Give them time to learn the tools you want them to get good at with smaller, more contained projects that will build their confidence and skills.

Empowering students to believe in themselves as capable of making things that matter, both in the physical and digital world, is a crucial part of learning.

So whatever you call it, making, project-based learning, hands-on, or inquiry learning – the time to start is always NOW!

What if… those helpful instructions aren’t so helpful

My last post linked to a video showing Dr. Paulo Blikstein of Stanford University showcasing the research going on in his department regarding how making becomes learning.

The next question is what to do when faced with early research? Do we just wait until the research is done? Or maybe even validated with other studies?

I don’t believe this.

I want to know, “What if these early findings are true? Would it change my practice? What would it look like in my classroom or school?”

Let’s just take one of the research questions being asked – Do detailed instructions help or hinder student understanding? What is the difference between a learner who is given step-by-step instructions vs. being given time to explore a new technology? It is often assumed that the way to learn something new is to follow explicit directions for a couple of tries, and then eventually do it on your own.

The early research is showing, however, that students who are given explicit instructions do NOT move to not needing those instructions. They stay “stuck” in a habit of depending on  instructions.

Uh oh. As someone who works with teachers learning new technology, what should I do? Should I hide my handouts? Make them less explicit? I don’t know, but I’m sure thinking about it.

Maybe you are thinking about this with your students. Why not do a little experiment? If you give students detailed instructions “just to get them started” on early project work – why not see what happens if you skip the tutorials and hide the handouts? After some early confusion (where you will have to refrain from jumping in with the rescue) you may see new patterns emerging.

I know I’m not waiting around for the perfect research to happen. I want to find out the “what if…” sooner rather than later.