New! Second Edition of Invent to Learn Released

We are excited to announce that a newly revised and expanded edition of Invent to Learn: Making, Tinkering, and Engineering in the Classroom has just been released.

It’s been five years since Gary Stager and I published the first edition of Invent to Learn. In that time, schools around the world have embraced making, makerspaces, and more authentic STEM/STEAM experiences for all children. It’s been fun to be a part of this worldwide phenomenon!

The brand new second edition includes a lot of new material reflecting how much has changed in a few short years. There are many new microcontrollers to choose from, and many more that are better for school use. The fabrication chapter has been updated to reflect how the design process has been streamlined by hardware and software progress. There is an entirely new section on laser cutters and CNC machines.

Programming options have expanded as well with software appropriate for students as young as four years old. Finally, there are some fantastic and accessible environments for programming microcontrollers. When we published the first edition, we were positive that a good block-based programming language for Arduino was just around the corner. Although new software environments emerged, they lacked the polish and stability required to make a difference in classrooms. Now things are different.

There is more research about the positive impact of fabrication, robotics, and coding to share. All of the suggested resources have been updated and expanded. The online resources here on are even more extensive.

The additions and updates to the book go beyond mentions of new technology and fixing broken URLs. There are new examples from educators around the world who have embraced making in their classrooms. There is more context provided for the connections between project-based learning and making. We attempt to be clearer about the real reason that making matters—not to build a special room or purchase equipment, but to make schools a better place for ALL students and teachers to learn.

The second edition is now available in paperback, hardcover, and Kindle on the Amazon website and other online retailers. For volume sales, using a PO, or international sales, please contact

Soldering – it’s not scary!

Soldering is a way to join electronic components by melting metal to join the parts, so that when it cools, your parts are strongly connectedboth electronically and physically.

Soldering is sometimes avoided in school makerspaces because it seems too technical or perhaps unsafe. But soldering is a way to continue an iterative process of building circuits with more reliability and good visibility into how things are connected.

One of the most important engineering principles when building things with electronics is how reliable your physical and mechanical connections are in your circuit. The thrill of getting a circuit to work can be immediately undone when it fails in mysterious ways because the connections are weak. It also makes troubleshooting circuits more difficult when you constantly have to wonder if the components are even connected, much less doing what you expect.

As a metaphor, the solder builds a bridge at the atomic level for the electrons to walk acrossthose lazy electrons! When your parts are just touching, even if you hold them tightly, there is always a microscopic chasm for electrons to cross, and they won’t do it if they can avoid it. If you are teaching about electricity as movement of electrons, this reinforces your lesson. (Even if you aren’t there yet, you can just say that the electricity won’t jump across empty space, even spaces so small we can’t see them, and leave the atomic stuff for another day.)

There are a number of ways to make a circuit by putting the components in close physical proximitywrapping wires as tightly as you can, tape, sticky copper tape, tightly sewing conductive thread, holding things together with your fingers, binder clips, alligator clips, etc. Those are all good ways to start, because they are immediate and easily changeable. But hopefully you don’t stop therethe next step is to build circuits that are more complex and/or more permanent. Breadboards are good for that, but introduce another way for things to failbad jumper wires, incorrect placement, knocking the parts loose by accident, etc. Anyone who has every tried to use a breadboard on a moving robot can testify that the connections are never permanent. And it’s also a level of abstraction that can confuse a beginner. I believe that soldering is much simpler and easier to learn than breadboarding.

Soldering is a skill that improves with practicethere are ways to make the joins betterand of course you can learn to not burn yourself and others. There are other skills for the teacher to learn and sharekinds of solder, different soldering irons, safety concerns, the mysteries of flux, and the joys of unsoldering. There are lots of good guides and videos available online to get started.

Soldering is useful for simple circuits, even just a few LEDs and wires can be joined quickly for a huge improvement in reliability. It also works for circuits with copper tape and (some) conductive thread (here’s a trick). Soldering does not require a printed circuit board. If you are building fun paper circuits, a simple next step once your circuit is working is to reinforce the places where the LEDs touch the copper tape with a bit of solder. The reward will be a much more reliable project that will last even when it’s taken home or put on display.

Using soldering as a solution to the problem of unreliable circuits teaches students that engineering is a continuing effort to solve the small problems as you make progress toward bigger goals. That means beginners absolutely SHOULD start off WITHOUT soldering so that they actually run into the problem and authentically need a solution.

If you are considering introducing students to soldering, know that all of this gets better and easier with practice, but the bottom line is that while we wait for someone to invent conductive superglue, soldering is the best way to create reliable circuits and successful electronic projects.