Khan Academy posts: implications for math education

Thanks to everyone who commented and tweeted about my recent series of posts about Khan Academy and the questions it raises regarding pedagogy, learning theory, and how we teach math in the U.S.

Here are the links all in one place.

The original post  – Compare and contrast: using computers to improve math education This post compares the vision of math education of Sal Khan and Conrad Wolfram in their TED Talks. There was so much commentary on this post I decided to delve deeper.

Part 1 – Khan Academy and the mythical math cure. This post is about how we believe certain things about math that are not true, but we keep on doing them anyway.

Part 2 – Khan Academy – algorithms and autonomy How math instruction tries to help students but may actually be undermining student confidence and basic numeracy.

Part 3 – Don’t we need balance? and other questions. A conversation with myself about how Khan Academy is often justified, and why it’s being hyped as a “revolutionary reform” in math education.

Part 4 – Monday… Someday. Teachers face a dilemma – even if you agree that math learning and teaching need to be different, it’s not going to change overnight.



EdGamer Episode 8 – Sylvia Martinez Says YES to EdGaming

EdGamer Episode 8 – Sylvia Martinez Says YES to EdGaming is live!

Last week I had a wonderful time speaking with Zack Gilbert and Gerry James who do EdGamer podcasts over at EdReach, a new site where lots of educators are collaborating on blogs, podcasts, and more. It was fun (and funny) and we touched on a wide range of subjects beyond games, including how I got into designing games and the work of Generation YES.

And of course we talked mostly about games in the classroom – both the hype and the hope that exist out there. The podcast is a nicely edited version of our conversation. Sylvia Martinez Says YES to EdGaming

I so admire podcasters – editing is difficult and time consuming work! Hope there are many more EdGamer episodes, and I’d be happy to spend more time with the Click and Clack of Educational Gaming.


“Don’t we need balance?” and other questions about Khan Academy

Note: this is Part 3 of a 4 part blog series on Khan Academy and math education. This post is an imaginary Q&A about what I’ve said in Part 1 about math myths and learning theories and Part 2 about algorithms, practice, and autonomy. The following questions are made up from what I’ve heard people say about Khan Academy. I am solely to blame for the answers.

Isn’t it best to offer a balance of all different kinds of learning opportunities for students?… Can’t we have open-ended problem-solving AND show the kids how to do the hard parts when they get in trouble?
Now, I would never tell a teacher what to do, it’s too easy for me to type a bunch of words and I don’t have to be there every day. But I think you have to consider the unexpected consequences of striving for balance between two opposing theories of learning – instructionism and constructionism.

To illustrate this, let’s imagine a playground game of hide and seek. On Monday, when everyone has hidden and the seeker finishes the count, he or she looks up… and at that moment, the teacher steps in and points out where everyone is hiding. On Tuesday, the teacher stands back and says nothing. On Wednesday, the teacher helpfully points out the hiders, on Thursday, says nothing.

What do you think happens on Friday?

I’m pretty sure that the seeker would immediately look to the teacher and ask where everyone is hiding. Or maybe everyone would just refuse to play since there’s no point to it. On the previous days, the teacher has trained them how to get the answer. Even with the “balance” in game play, one outweighs the other. There is no balance possible, because the teacher’s authority causes the balance to permanently shift. It’s the very essence of disempowerment. Teacher power and authority is the 800 pound gorilla siting on the end of a see-saw.

I believe that for many of the same reasons, the attempt to explicitly show students how to solve problems becomes a roadblock when you suddenly turn around and demand that they figure things out for themselves. It just sounds like a trick, and if they wait long enough, you will give them the answers and move on. Children are pretty pragmatic about these things.

I still think you need balance…
I could almost go along with the “balance” argument if the world of U.S. school math weren’t so unbalanced. I would guess that 95% of all math taught in all classrooms across the US is direct instruction aimed at the “skill” level and memorizing the right algorithm to solve problems most likely to be found on standardized tests. So there’s no balance there to start with – the only way to achieve “balance” is to do more open-ended, student-led inquiry about math, solving real problems (not textbook or test prep problems), not telling students what the right answers are, etc. And do LOTS more of it. Then we can talk about balance.

But at least the ability to stop and replay the video gives the student control – isn’t that what we always look for in student-centered learning?
Here’s the tradeoff – is student control over the pace worth losing student control of the entire process? They get to choose how quickly they are force-fed someone else’s representation of a process instead of creating their own representation in their heads. Asking the student to give up control of their own thought process to absorb a one-size-fits-all delivery of information requires a large degree of compliance on the student’s part. In my book, the ability to control the pace pales in comparison. I think a teacher would have to weigh these very different kinds of control and whether the trade-off is worth it.

Why shouldn’t we teach students a good way to solve a problem, what’s the point of letting them fumble around?
When we tell a student the “right way” – we are really telling them that math ability is primarily about compliance. This is about power, and we lose a lot of students in these power struggles.

Margaret Mead said, “emphasis has shifted from learning to teaching, from the doing to the one who causes it to be done, from spontaneity to coercion, from freedom to power. With this shift has come… dry pedagogy, regimentation, indoctrination, manipulation, & propaganda”. (thanks to Ryan Bretag for this quote)

What we call “good students” are compliant students who don’t call this power structure into question. (By the way, this was me – even when I saw other ways to solve problems I knew not to say anything. I amused myself by solving problems in alternate ways, then would write down the answer the way I knew the teacher wanted.) If you don’t think students are acutely aware of the power structures in school, you are underestimating students.

Students “fumbling around” is actually where the learning happens – and there’s no shortcut for this process.

Why waste time letting students “discover” everything. They aren’t going to re-invent the Pythagorean theorem by themselves.
It’s a straw man argument about inquiry-based, constructivist education that it’s “illegal” to lecture. Whenever I hear this I imagine a scene where the constructivist police burst through a classroom door and wrestle a teacher to the floor who was just explaining to a student how to do something. The difference is that explanations should serve to naturally move a problem-solving process along, not be the whole lesson.

In this kind of classroom, the teacher’s role is crucial – by posing problems that lead to big ideas and steering a class as they solve problems. By “being less helpful” as Dan Meyer says. (He doesn’t say don’t help at all!) This is not wasting time, it’s letting the students build the knowledge in their heads and acknowledging the fact that this takes time. It also takes time to learn how to teach this way. It’s not the case that the teacher is off taking a smoke break while the kids do this on their own. The teacher’s role is crucial – it’s difficult work and takes years to master.

This exact question is discussed by Piaget as related in a brilliant essay by Alfie Kohn – What Works Better than Traditional Math Instruction from his book The Schools Our Children Deserve. (I can’t improve on his explanation of why traditional math instruction is failing our children – please read this essay.)

So isn’t this the “flipped classroom” that Khan Academy proposes?
People are associating Khan Academy with the “flipped classroom” – something I talked about in this post (‘Teach Naked’ and complacency natives). In a so-called flipped classroom, the lecture takes place outside the classroom and classroom time is spent on discussion and problem solving. Students might watch the video at home (or in the car, bus, or anywhere) and then there would be a lot of classroom time freed up for discussion, working on individual problems, or whatever else needs to be done. That’s the theory, anyway.

So, first off, do you believe:

  • Students will actually watch the lecture?
  • The percentage that do watch the lecture will be any different than those who currently do their homework?
  • The percentage of kids who zone out, multi-task, or don’t understand will be any different than during a classroom lecture?

But I’m willing to let all these assumptions slide so we can move on. Let’s pretend that most of the students will listen/watch a math lecture on their own time.

Can you disconnect the lecture from the problem solving? Khan Academy videos have no context outside of class – other than that they match the standardized tests. As Derek Muller points out (see Part 1), these videos may have the unintended consequence of cementing incorrect models as students assume that they understand, thus making the teacher’s job that much harder.

Swapping the timing of certain teaching practices seems a minor logistics issue, at best. Moving the timing of the lecture doesn’t change the fact that it’s still a lecture, and not even a lecture about interesting stuff. Most of these “lectures” are simply worked out example problems. Do we think that a student who doesn’t “get it” in the classroom is more likely to “get it” on the bus? The main issue is the reliance on information delivery to trigger understanding.

This also assumes that you are replacing one lecture with no feedback with another lecture with no feedback. That’s pretty insulting to LOTS of teachers. I won’t assume that ALL teachers who lecture are bad, or that there aren’t a thousand ways to intersperse lecture with checks for understanding. There are no raised hands in the Khan Academy, no questions, no teachable moments, no interesting asides. You have one interaction, and one interaction only — the ability to play, stop, and rewind.

If I were a huge fan of making videos about how to solve problems, I’d certainly try to make it more student-centered by allowing students to make the videos. The process of figuring out how to clearly explain a concept would give a student time to reflect about the process in depth. They say teaching is the best way to learn, so why let Mr. Khan have all the fun!

But seriously, here’s a conundrum — the art of leading a productive learning discussion is much more difficult than lecturing. Are we to expect that the teacher who couldn’t even do the lecture part is suddenly going to be able to lead a productive discussion about math? It would seem to me that the teachers most likely to see Khan Academy videos as a good substitute for their own lectures are also the least likely to be able to take advantage of the classroom time for any substantive discussion that would help students.

Let’s not even talk about what happens if 3, 4 or 5 teachers each assign a 40 minute lecture to listen to every night – so if this model actually works… it’s impossible. Don’t you love models of teaching where successful adoption assures failure?

Nothing like this has ever existed before, it’s so exciting!
Really now? Didn’t you ever watch Donald Duck in MathMagic Land or Sunrise Semester? The amount of acclaim for Khan Academy is, in my view, way over the top and only reflects our acceptance of math myths as drivers for pedagogy and wishful thinking that there is a easy answer for learning.

I’m just glad to see that technology is finally useful in education.
I’ve seen Khan hyped as a transformative use of technology, but. I can’t even begin to understand how turning the computer into a VHS player is seen as transformative. I know, I know — he’s got quizzes too. Answer ten questions and you can resume playing the video. Brring, brrring1988 called and they want their CAI (Computer Aided Instruction) back.

But the Khan Academy videos show students how to solve the math problems that will be on tests – don’t we want students to do better on tests?
That is the heart of it – do we care about kids learning math or doing well on tests? They aren’t the same thing.

These videos have millions of hits on YouTube – it proves that students need this help and are searching for it.
Yes, it does. It shows that many students really do want to do well, and doing well is defined as passing tests. We have a nation where lots of students are working their hardest to do something that matters little. Imagine if we asked students to do math that was actually useful and interesting!

My teacher is terrible and these videos help me.
I’m sorry. I’m glad you’ve found something that helps. Nobody is trying to take away something that is helping you.

Salman Khan is a master teacher and shouldn’t everyone get the best teacher?
Salman Khan obviously has a gift for clearly explaining how he understands complex computations. Being a teacher, however, is more than explaining stuff. When a student has misconceptions, they often need to talk through them, and a teacher SHOULD be an expert in recognizing those misconceptions and steering students through those rough waters. There SHOULD be a lot of listening involved. I’m not excusing bad teaching practice – far from it.

You’ve cherry-picked your research and sources.
Absolutely true. I said at the beginning this wasn’t going to be a literature review. I’ve included a few quotes and references that influence my thinking. Kamii, Papert, and Kohn appear often. Between them they have decades of work, dozens of books, and research to support it all. If you disagree, I hope at least you’ll read further. Their ideas form a connective network with other great educators from Piaget to Dewey to Vygotsky to Freire and many more.

Just to pile on, I’m looking forward to Alfie Kohn’s new book, Feel-Bad Education . . . And Other Contrarian Essays on Children & Schooling. I’m also loving his recent column, What does education research really tell us? He relates new research about how studies done in the short term often support the use of traditional teaching practices (like direct instruction and homework for practicing skills). However, as these studies are refined and the students followed for longer periods (months or years instead of weeks), these traditional practices have zero, or even negative results. Yup, I <3 Alfie.

I like teaching in a more open-ended way – but no one understands.
Many teachers struggle with these math myths and the cultural expectations of how math should be taught. Even if they want to teach in more open-ended way, they are often alone, facing off with parents, colleagues and administrators. Any attempt to teach math as less skill-based is met with skepticism, if not outright hostility. Even research is met with a “… yes, but, I believe it’s important” as if it’s a matter of opinion. It’s almost impossible not to give into that pressure, and as a consequence many teachers give up.

I for one would never encourage a teacher to martyr themselves in a no-win situation, especially with the overemphasis on standardized testing and current punitive politicized atmosphere.

As far as parents go, though, I think that most parents really do want what’s best for their children and many can be convinced. Teachers may find allies among parents who are at their wits end with battles over math homework or with parents who watch their children go into school natural learners and come back hating it. Some parents are going to buy fraction flashcards for their kids no matter what you say or do, that won’t change. Try showing them this: Finland’s Educational Success? The Anti-Tiger Mother Approach

Find allies wherever you can. Teachers are doing amazing things all over the US and around the world. These days, it’s possible to develop colleagues who you may never meet in person, but might be your pedagogical soulmates.

You must not know much about real schools – haven’t you seen the list of standards that math teachers have to meet? The expectations for the test? The 400 page textbook? We have to get the kids through this stuff and there’s just no time for exploring, discovery, or anything else. Hoping that things will change someday doesn’t help me or my kids today.
You are right – the need for Khan Academy is completely fits the way we assume math has to be learned and taught. The “if it’s Tuesday it must be exponents” model is failing us. That has to change.

I’ll say a bit more about this Monday… Someday dilemma in my next (and last) post of this series.

Part 1 – Khan Academy and the mythical math cure
Part 2 – Khan Academy – algorithms and autonomy
Part 3 – Don’t we need balance? and other questions  (this post)
Part 4 – Monday… Someday

Khan Academy and the mythical math cure

My recent post about the differences between Salman Khan and Conrad Wolfram’s TED Talks (Compare and contrast: using computers to improve math education) brought a lot of traffic to the blog, some great comments, and more than a few Twitter conversations about how to teach math.

So I’d like to get more specific about what I think is wrong about the Khan Academy approach by writing about things I see as wrong with the way we teach math in the US.

No matter if we agree or not about Khan Academy, I’m fairly certain we can agree math learning is not going as well as we’d like (to say the least.) Too many people are convinced by the system that they “hate math”, and even students who do well (meaning, can get decent test scores) are often just regurgitating stuff for the test, knowing they can safely forget it shortly afterward.

There is plenty of blame to go around… locked-in mile-wide inch-deep curriculum, focus on paper and pencil skills, lack of real world connections, assessments that are the tail that wag the dog of instruction, a culture that accepts “bad at math” as normal, teacher education programs that have don’t have enough content area specialization, … you can probably add to this list.

I can’t tackle all of these. But if you are interested, I’d like to share my thoughts about Khan Academy and a few epic math myths that are relevant to a discussion of the Khan Academy. In America, these myths are so pervasive that even people who were damaged by the way they were taught themselves accept them and insist that their children be taught using exactly the same methods.

I think these myths explain both the widespread acceptance of Khan Academy as a “revolution” and also why in reality it’s not going to change anything.

Myth: Learning math is about acquiring a sequential set of skills (and we know the sequence)
I think people have a mental image of math that looks something like a ladder. You learn how to add single digit numbers – rung one. You learn 2 digit addition – rung 2. You learn 3 digit addition – rung 3. In this model, you get to rung 3 by throughly learning rung 1 and then rung 2.

The myth continues with the idea that the march up the ladder goes faster if we tell children exactly how to do the problems step-by-step. In the language of math instruction, these step-by-step processes are called algorithms. Some kids “get it”, some don’t, but we accept that as a normal way that learning happens, and “help” the ones who don’t get it by drilling them harder in the step-by-step process, or devising additional tricks and supports to help them “remember” how to solve the problem.

If they don’t learn (meaning pass tests), we take this as evidence that they haven’t practiced the steps well enough, and prescribe more of the same.

Khan Academy plays perfectly into this myth. Here are a convenient set of videos – you just find the one you need, push play and the missing rung in your mental math ladder is filled in.

A corollary to this myth is that we can test students for these discrete math skills, see which “rungs” are missing, and then fix that problem with more instruction and practice on that specific skill.

Let’s diagnose how we think about learning a simple math skill
When we teach 2-digit addition, we immediately introduce the algorithm of “carrying”. You should know, though, that the U.S. form of carrying is just one of many addition shortcuts, not handed down on stone tablets. It’s not used world-wide, nor is it something that people naturally do when adding numbers. But it’s cast in concrete here, so we teach it, then we practice that “skill”. With our ladder model in mind, if a child can’t answer the 2-digit problems correctly you do two things: 1) Do more practice on the rung under it, and 2) do more practice in the algorithm, in this case, carrying.

The problem is that if a student has simply memorized the right answers to rung 1 without real numeracy, reviewing carrying will not increase that understanding. In fact, it will reinforce the memorization – because at least they are getting SOMETHING right. They are like the broken watch that’s right twice a day. This issue gets worse as the math gets more complex – the memorization will not be generalizable enough to solve more complex problems.

A different vision of learning

“Some of the most crucial steps in mental growth are based not simply on acquiring new skills, but on acquiring new administrative ways to use what one already knows”. Papert’s principle” described in Marvin Minsky’s Society of the Mind.

If this is true, and since these administrative skills are not sequential, it makes it less likely that we really learn math in a sequential way. I think we’ve all had similar experiences, where a whole bunch of stuff suddenly makes sense.

This different vision of how people learn is called “constructivism“. It’s a theory of learning that says that people actively construct new knowledge by combining their experiences with what they already know. The “rungs” are completely different for each learner, and not in a specific order. In fact, rungs aren’t a very good metaphor at all.

“…constructivism focuses our attention on how people learn. It suggests that math knowledge results from people forming models in response to the questions and challenges that come from actively engaging math problems and environments – not from simply taking in information, nor as merely the blossoming of an innate gift. The challenge in teaching is to create experiences that engage the student and support his or her own explanation, evaluation, communication, and application of the mathematical models needed to make sense of these experiences.”Math Forum

Learning theory? What’s the point?
We need to talk about learning theory because there are different ones at play here. And to be complete, we are also going to need to talk about teaching theory, or pedagogy, along the way. Constructivism doesn’t mandate a specific method of teaching, but is most often associated with open-ended teaching, constructionism, project-based learning, inquiry learning, and many other models. Most of these teaching models have at the heart an active, social view of learning, with the teacher’s main role as that of a facilitator.

However, the teaching theory underlying most of American math education is instructionism, or direct instruction – the idea that math is best taught by explicitly showing students how to solve math problems, then having students practice similar problems. Direct instruction follows when you believe that math is made up of sequential skills. Most American textbooks use this model, and most American teachers follow a textbook.

This is important distinction when talking about Khan Academy. Khan Academy supports teaching by direct instruction with clear (and free!) videos. If that’s your goal, you’ve found the answer…. but wait…

Is clarity enough?
Well, maybe not. Even if you believe in the power of direct instruction, watch this video from Derek Muller, who wrote his PhD thesis on designing effective multimedia for physics education. Really, if you are pondering the Khan Academy question, you must watch this video.

“It is a common view that “if only someone could break this down and explain it clearly enough, more students would understand.” Khan Academy is a great example of this approach with its clear, concise videos on science. However it is debatable whether they really work. Research has shown that these types of videos may be positively received by students. They feel like they are learning and become more confident in their answers, but tests reveal they haven’t learned anything. The apparent reason for the discrepancy is misconceptions. Students have existing ideas about scientific phenomena before viewing a video. If the video presents scientific concepts in a clear, well illustrated way, students believe they are learning but they do not engage with the media on a deep enough level to realize that what was is presented differs from their prior knowledge. There is hope, however. Presenting students’ common misconceptions in a video alongside the scientific concepts has been shown to increase learning by increasing the amount of mental effort students expend while watching it.” – Derek Muller, Khan Academy and the Effectiveness of Science Videos

Derek makes an interesting point – clarity may actually work against student understanding. Videos that slide too smoothly into an explanation do not give a student a way to process their misconceptions and integrate prior knowledge. The very thing that makes the videos so appealing – Khan’s charisma, sureness, and clarity may lull the viewer into comfortable agreement with the presentation without really absorbing anything (Research references and Dr. Muller’s PhD thesis on this subject)

Hooks, not ladders
This goes back to my original point. People learn by reorganizing what they already have in their head and adding new information that makes sense to them. If they don’t have a “hook” for new knowledge, it won’t stick. The tricky part is, though, that these hooks have to be constructed by the learner themselves.

Wishful thinking about downloading new information to kids is just that – wishful thinking.

There is no doubt that Khan Academy fills a perceived need that something needs to be fixed about math instruction. But at some point, when you talk about learning math, you have to define your terms. If you are a strict instructionist – you are going to love Khan Academy. If you are a constructivist, you are going to find fault with a solution that is all about instruction. So any discussion of Khan Academy in the classroom has to start with the question, how do YOU believe people learn?

I have more to say about Khan Academy and math education in the US — this post turned into 4 parts!

Part 1 – Khan Academy and the mythical math cure (this post)
Part 2 – Khan Academy – algorithms and autonomy
Part 3 – Don’t we need balance? and other questions
Part 4 – Monday… Someday

My context for these posts: I fully admit I’m not an expert in math or math teaching, just an interested observer of K-12 education in the U.S. In my work, I have unique opportunities to see lots of classrooms in action and talk to lots of teachers. It means I get to see patterns and similarities in classrooms all over the country. I don’t intend to do a literature review or extensive research summary in these posts. This comes from my personal experience, my master’s degree in educational technology and draws from a subjective selection of research and sources that have had a deep impact on my thinking about learning. Finally, I am NOT trying to tell teachers what to do. I’m not in your classroom — that would be silly.

Compare and contrast: using computers to improve math education

Compare and contrast these two approaches:

1. Conrad Wolfram: Teaching kids real math with computers

2. Salman Khan: Let’s use video to reinvent education

Wolfram talks about how computers should be used to advance the understanding of math the way it’s really used in the real world.

Kalman talks about using computers to deliver traditional math instruction and gold stars.

Kalman reinforces the “teaching” paradigm; Wolfram blows it up and insists we look critically at what’s being taught.

Both these talks are about “improving education with technology” – but they couldn’t be further apart in world view.

But the TED audience applauds them both. This is why conversations about reforming education are difficult.


PS Wolfram makes a great point at the end of his talk about how, if we think that learning to calculate teaches procedural thinking, we have a much better way to do it by teaching programming.

Students co-author the learning experience

It’s so great to have a string of stories about the positive impact of student technology teams in schools.

It’s tech time at Capital High – Generation Tech lets students become ‘co-authors of learning experience’

The Olympia School District was where Generation YES founder Dr. Dennis Harper settled in about 1990 after working around the world to bring computers to schools in countries from Africa to Afghanistan. He became the technology director and found a school district that wanted to be first class in technology, but had little to start with. He dug in and got started by involving students in every aspect of the district technology – from planning, to getting out the vote for a technology bond, to putting up a district website when no one even knew what that was.

One of the teachers he immediately started to work with was Scott LeDuc at Capital High School. Today Scott is still at Capital, still working with students to make “student-centered learning” a reality. This article profiles Scott and his students who work every day to make education better.

Today’s young people have grown up in a society that revolves around technology.

Want to talk? Send them a text message on their cell phone.

Want to see who their friends are? Visit Facebook.

Want to remove photos from your digital camera and fix that annoying printer error on your computer? Give them about five minutes, and they’ll probably be able to figure out and explain everything to you.

Their teen years are so much different from those of their parents and grandparents, and that’s why students in Capital High School’s Generation Tech class are exploring ways to change their learning experiences, too.

For example, several of the students have begun serving as “technology mentors” at the school, helping teachers and other staff members become more tech-savvy, according to Career and Technical Education instructor Scott Le Duc.

“Education is not going to change fast enough for anyone,” he said. “The only way it’s going to change is if students become the co-authors of the learning experience.”

Read this article – it’s not about technology, it’s about life-long learning…

Although students have access to some of the newest high-tech bells and whistles in their classroom laboratory, much of their growth is taking place outside the class, where students are serving as information resources for others, helping to locate computer support and projects for their teachers and peers, Le Duc said.

“They blow my mind; this group of young people is just awesome,” he said. “They want to see school change, and they’re making it happen.”

Scott authored the GenYES curriculum units on student tech support based on his experiences at Capital High School and years of teaching students how to “learn how to learn” by fixing real problems. Students don’t learn by being talked at – they learn by tackling challenging problems and issues that are meaningful and DOING something about them. And of course, teachers amplify the learning when they guide students through these types of experiences with expertise.

As one of the commenters on the article said – WAY TO GO, COUGARS!


Big problems require small solutions

While co-hosting the TEDxNYED event last week, I found myself wondering how the amazing solutions I was hearing could spread. How could we get more students connecting globally like Brian Crosby’s kids; how could more at-risk students be freed from the assessment and curriculum that failed them so they could excel like the students Gary Stager worked with in the Maine prison; how could every urban school be part of an urban garden network teaching youth and the community about low cost, healthy food… the list was endless.

It struck me that day – some problems are so big they need small solutions.

I heard several people say after these talks – “Yes, sure, that was great, BUT IS IT SCALABLE?”

I’d always considered that a reasonable question. But now, I think it’s a rhetorical trick that really means. “CAN IT FIT INTO THE CURRENT SYSTEM?”

Scalable should mean replication. Can you do “it” – whatever “it” is, over and over again. And the answer is yes, you can have urban gardens, do away with 19th century curriculum, and have globally connected classrooms IF you let the conditions flourish on the ground level. IF you let the teachers teach and the students learn. IF you let the solution be a small solution, carried out at a human scale. IF it remains a local, adaptable solution that meets the needs of the participants, not the system. The proof of that was given by Dennis Littky of the Big Picture Schools, who has started over 60 schools that value each and every student. That’s scalability.

But it doesn’t mean you impose a solution from above, put layers of bureaucracy and administration on it, and add untold costs in demanding that everyone do the same thing. We are just used to doing things that way in American education and we’ve convinced ourselves that it’s cheaper, more efficient, and the American Way. It’s not. Every problem is not a moonshot or the same as building interstate highways. Learning is certainly not.

Big problems require small solutions. And they demand we trust in the human beings implementing those solutions. My thought for the day.


PS – The videos from TEDxNYED are not up on the site yet – when they are, I’ll link them up to the examples in this post.

Arts education declining, especially for minority youth

A recent National Endowment for the Arts (NEA) Survey of Public Participation in the Arts data reveals that 3 out of 4 Americans participate in the arts. This participation includes a full spectrum of artistic genres and participation via electronic media and personal arts creation. The good news is that US adults are participating in the arts in more ways than ever before; the bad news is that we are depriving children of the art education needed to maintain this.

According to the report, arts education is the leading factor in arts participation. No surprise there.

“Childhood arts education has a potentially stronger effect on arts attendance than age, race, or socioeconomic status. Long-term declines in childhood arts education have serious implications for the future of arts participation in America.

  • In addition to reporting higher arts-attendance rates, those who receive arts education as a child are more likely to create or perform art, engage with the arts via media, and take art classes as an adult.
  • In 1982, nearly two-thirds of 18-year-olds reported taking art classes in their childhood. By 2008, that share had dropped below one-half (2.6 million), a decline of 23 percent.
  • Declines in childhood arts education from 1982 to 2008 are much higher among African American and Hispanic children than among white children. In that timeframe, there was a 49 percent drop for African Americans, and a 40 percent drop for Hispanic children, compared with a statistically insignificant decline for white children.”

We are not serving these children – or this country – well.


This can’t be done in our school

Yesterday I wrote about my session epic fail. Don’t worry, I’m over that!

The thing that made me feel the worst, though, was a glimpse of a session evaluation. I know speakers aren’t supposed to look at them, but they were on the table when I was packing up and there it was in the comments section – “This could not be done at our school.”

That really made me sad. I try in the session to include a wide variety of examples of students taking charge of the technology at their own schools. Some are long term, some are just a day’s work. There are elementary students, middle school and high school students. Schools with refurbished computers and schools with one to one everything. There are ways for students to work alongside adults in every situation to make the technology use more effective school-wide.

So. how could this person think that simply asking young people to help out is impossible? What kind of school climate does that imply? I wish I could find that person and ask what they meant – are the relationships between adults and students at your school that broken? Nothing I said had any relevance to your school?

But I think the best question would be – what vision would it take to convince you to even try?