Creativity is not just being artistic or having new ideas. As many schools are working to incorporate STEM and STEAM into the classroom, design and creativity are the key to real and relevant experiences in the classroom.
Adding more and different technology to the classroom toolkit invites students of different abilities and interests to experience STEAM subjects. This creates classroom conditions that invite technology understanding and creativity for all students, even those who think they “don’t like technology”.
In many cases, digital tools, electronics, and programming are seen as something only a few students (the “nerds”) want to try. Yet these are powerful learning opportunities that all students should engage in.
Key ideas
Design is a way to make thinking visible, connecting abstract pedagogy to the real experiences of children. The A in STEAM is not about decorating science projects or coloring math worksheets, but a way to add design and design’s cousin, aesthetics, into classroom projects.
Next Generation Science Standards provide new directions for engineering practices. Again, design is the key to this. Design is the process of engineering. It provides a framework to solve problems, using the science, math, and technology that students learn. These standards are not “business as usual” for schools. Looking at them as simply a rearrangement of existing curriculum ignores the revolutionary addition of engineering design to the expectations for science curriculum.
Formative assessment strategies that strengthen the project process in real time as students work through design and engineering projects.
Inclusivity that ensures that new technology and engineering experiences invite and support students who might not have the background or inclination to see themselves as engineers.
Equity in STEM areas for girls and other under-represented groups is not a matter of finding the young people who can do the work asked by the current curriculum, but to find new curricular areas and connections to the interesting and relevant STEM and STEAM opportunities found in the real world.
Everyone has a role to play
Leaders keep the vision alive in the face of multiple distractions. They allow new ideas to flourish and provide support for educators to work out the details, while still moving the ball forward.
Coaches help both the early adopters and the cautious “this too shall pass” reluctants to create a shared, achievable vision.
Teachers find ways to weave the old and new together in a coherent way for students. This means being a learner, leader, and a designer. There is no question that this in itself takes creativity. Teachers are asked to do more with less, and to make more time where there is none, all the time staying current with research and personalizing learning for every student. What could be more creative than that?
In the quest for STEAM, there will be tensions and questions. Can science be creative? Doesn’t math always have one right answer? Aren’t basic facts and rote memorization the ways that science has always been taught? Where will we find the time to do more in depth projects that give students creative opportunities? If students are doing more creative and personalized work, how will we assess it and meet learning objectives? Am I creative enough to make this work?
And yet, we know that students thrive when given the opportunity to do relevant, meaningful, and creative work. Together, we must push against paralyzing fear that there are too many variables and not enough time to figure it all out.
We have a ways to go
Creativity is often misunderstood as simply a personal attribute – you are a creative person or you aren’t. Yet the word is crucial as schools struggle to implement STEAM programs that are defined only as subjects – not as mindsets. The “A” in STEAM is incredibly important – it is the verb of the sentence, and at its heart is the creative process. It is understood that artists have a creative process, but less well understood that scientists, engineers, and mathematicians do as well.
When schools work to understand what STEAM really means, there are certainly parts that seem easier than others. All schools have math and science classes. Technology is taken care of as we increasingly adopt computers into classroom practices. Engineering is a small but growing option in many schools.
However, we have work still to do. Science and math classes need to adopt modern ways that real scientists and mathematicians work. You can’t just put a sign up that says “STEAM Academy.” Students want and respond to science classes that are real and relevant, where they can engage in making things that make the world a better place, and in doing so, learn about the underlying laws of the world around them.
Technology is not only about computers, but about the basic human desire to change the world. Engineering is not just a college major, but a way for even young children to design and build things that help them make sense of the world.
When all of this is taken into consideration, you cannot help but notice that creativity, meaning literally to make things, is a key component. Design is the process of engineering and technology is the tool. Creativity is the mindset.
Recasting STEAM this way also invites more students who are not the “usual suspects” into the fantastic world of STEAM.