Category Archives: design

Taking maker education to scale – interesting findings from FabLearn Denmark schools

Next week I’ll be hosted by the FabLearn DK (also known as Fablab@schools DK) network, a group of 44 (and growing) schools in four municipalities in Denmark: Kolding, Vejle, Silkeborg and Aarhus. These schools share resources, professional development, and expertise in their quest to engage students in high quality fabrication, design, and engineering experiences within the context of existing schools.

I’ll be one of the keynotes at FabLearn DK (sold out!) — but more importantly, I’ll be meeting and working with educators and learning from them. I’m very excited and honored that I can spend a week with these schools.

This is potentially a model of the elusive “scale” that so many educators seek from “maker education.”

An integral part of this effort is that a team from the University of Aarhus, led by Ole Sejer Iversen, has been documenting and conducting research from the start of the project to study how digital fabrication could promote 21st century skills in educational contexts. Here are some preliminary (draft) results from one report to be released very soon.

Fablab@school.dk status 2017

  • Number of fablab@school.dk (schools): 44
  • Teachers engaged: 1,160
  • Students engaged: 12,000

Scaling the Fablab@school initiative towards 2019 (estimates)

  • Number of fablab@school.dk (schools): 61
  • Teachers engaged: 3,050
  • Students engaged: 19,100

In a 2016 survey study with 450 fablab@school.dk affiliated students (aged 11-15) and 15 in-depth interviews we found that:

  • FabLab students improved their understandings of digital fabrication technologies and design
  • FabLab students gained experience with a range of digital fabrication technologies
  • FabLab students found the work with digital fabrication technologies motivating, interesting, and useful for their futures. They “liked” FabLab, “loved projects with digital fabrication”, and “learned a lot.”
  • Learning outcomes and motivation were very dependent on schools and teachers*

Also quoting from the draft:

There were large variations within the FabLab group with regard to the number of technologies used, design process structuring, student motivation, and students’ self-perceived knowledge, as well as on self- perceived learning outcomes such as creativity with digital fabrication technologies, abilities to critically reflect on the use of digital technologies, and complex problem solving. The variations among groups of schools followed a pattern in which higher numbers of technologies, more knowledge of the design process model, higher motivation, and better learning outcomes appeared to be connected.

In schools in which students used a wide range of technologies, worked with own ideas with a diverse range of digital technologies, and had their work scaffolded and structured around the AU Design Process Model** to a high degree, students reported that they had on average become better at imagining change with technology, at working creatively with technology, at understanding how new technologies are created, and at understanding how technology is affecting our lives as well as at solving complex problems. Thus, the FabLab@School.dk project did initiate the development of Design literacy among some students. However, it was very much up to chance, what education in digital fabrication and design processes, the students received.

My notes:
* Shocking, eh? (NOT) The full report goes into more detail on these variations, but it’s no surprise that when you give people more agency, they tend to do unique things. Can we all strive for excellence? Sure – but that’s not the same as everyone doing the same thing. Scale does not have to mean replication. More on this later.

** The Aarhus University (AU) Design Process Model is a specific design process being developed for educational use. The schools were free to use (or not use) this model with students.

Coding or programming?

In recent years, it’s become popular to call the act of programming computers “coding.” Some people claim that there are differences, that there are no differences, that it depends on the level of the language used, or that coding implies informality and therefore is less thoughtful or skilled than programming. Wikipedia seems to be trying to parse that difference in its definition of computer programming.

My personal experience being in software development over the time this vocabulary shift happened is that both the act and the terms slowly merged. When I started programing (back in the stone age) HTML and websites did not exist. My job title was software engineer and my job was programming computers. The term “coding” simply didn’t exist.

Programing a computer meant designing algorithms and creating the machine instructions that would react to the real world, do complex math or data manipulation, and output results. This applied to programming jet navigation software or programming games. (And I did both!)

After the web and HTML appeared, people were hired in technical positions to make websites. HTML is a markup language, not a programming language. HTML “marks up” the text, just like a human editor does, and controls how text is displayed, like making certain words bold. Way back when, it was pretty simple and making websites was called scripting or coding.

You programmed computers—you coded websites. I can’t say that in EVERY job in every industry this was true, but in my world at that time this was a big distinction in hiring, job descriptions, and pay.

As time went on, websites and the languages used to create them became more complex. Websites are no longer passive,  simple text manipulation. The line between the network and computer became less distinct, and the functions, tools, and practices merged.

There was never one day when people said, OK, coding now equals programming, it just happened. Coding or programming? Whatever you choose, it’s a vocabulary shift that is here to stay.

Makerspace on a shoestring? Yes, but…

sylvia-FETC-makerspace-session
Me waving my hands at my makerspace startup workshop at FETC earlier this year

One of the questions I get asked quite a lot is about budgets for educational makerspaces.  We are doing this on a shoestring, is that OK? We don’t have any money, is it still worth doing?

My first reaction is typical, I think – of course go for it! No one should be prevented from having a great hands-on learning experience because of lack of funds. There are lots of things that can be repurposed and borrowed. In fact, recycling is a hallmark of the “maker mindset.” Doing more with less is a worthy engineering constraint that develops ingenuity and practical skills.

Yes…but…

However, I think there is a “yes… but” that should be understood. When educators are trying to change culture and practices in an organization, it matters that you acknowledge the size of the shift you are trying to accomplish. A bigger shift requires a bigger and more explicit commitment, and having a budget is a visible and commonly understood sign of commitment.

Whether it’s wanting STEM courses to be more inclusive or shifting teaching practices to be to more project-based, it’s about how far you want to go from where you are. You want big changes? Do big things. Of course, it’s not always about money. Your commitment might be towards long-term professional development, but that’s a commitment of time, an even more precious commodity.

But wait, there’s more!  – Want to hear more about making, makerspaces, design, and STEM? Come to FETC in January – I’m leading two workshops and two sessions! 

Make it, wear it, learn it – session slides and links to wearables resources

At ISTE 2016 I presented a new session called “Make It, Wear It, Learn It” about wearable electronics. It’s a combination of what’s out there now that can be done by students today, some far out gee-whiz stuff coming in the next few years, and how to start with wearables for young people.

Wearables are a way to introduce people to engineering, design, and electronics that are personal and fun!

Screen Shot 2016-07-03 at 3.21.15 PMHere’s the PDF of the slides. Video links are below. ISTE didn’t record this session, but someone said they were periscoping it. If anyone has that, I can post the link here!

There were some powerhouse tweeters in the audience who shared links, photos, and sketchnotes! Thanks to all of you!

Links to videos in the presentation

3D printed fashion at home – Designer Danit Peleg creates fabrics and wearables using easily available 3D printers.

Imogene Heap – Gloves that make music (This is the full video. For the presentation I edited it for time.)

Super-Awesome Sylvia’s Mini-Maker Show (Making a soft circuit toy) – This video is good for showing sewing tips for conductive thread. (Sylvia’s full website)

Made with Code – Maddy Maxey – (This is the full video. I edited it down for time in the presentation.) There are other good videos on this page.

Fashion made from milk fibers – This is the “bonus video” I showed as people were coming into the presentation. Anke Domaske creates fabric from milk proteins, working at the intersection of biochemistry and fashion.

Links to shopping tips and resources for wearables

Resources – InventToLearn.com/resources

Shopping and vendors – InventToLearn.com/stuff

Professional development, workshops, and other links

Constructing Modern Knowledge Summer Institute

Sylvia’s website

Professional development opportunities – I can come to your school! Invent To Learn workshops, consulting, and other events are available.

All books available from CMK Press (publisher of Invent To Learn)

Before you “do a makerspace” – four considerations

When we talk about making, there is a tendency to overlap our terms, like saying we’re going to “do makerspace”. I think unpacking these terms help uncover underlying assumptions, especially when designing new spaces and learning opportunities. I see this as four distinct aspects that work together:

  1. Place – Makerspace, hackerspace, Fab Lab, Techshop, shop, science lab, open classroom, studio
  2. Culture – Maker movement, hacker culture, craft, green, economic self-determinism, service-learning, artisanal, amateur science, citizen science, urban agriculture, slow food
  3. Process – Making, tinkering, Design Thinking, design, Genius Hour, PBL
  4. Underlying belief about teaching & learning – Instructionism, behaviorism, constructivism, constructionism

By looking at these four aspects, we can untangle some of the confusion about what “making” in education is. These can combine in interesting ways – you can have a Design Thinking program that is strongly teacher directed in a makerspace that has a green eco-streak that permeates the projects. The place doesn’t dictate the process, which is good and bad.

Many times, when designing new learning opportunities or spaces it is assumed that their current culture will transform as well. Space planning doesn’t magically transform pedagogy. You can’t assume that just because you build a flexible space with terrific materials, it will magically be filled with wonderful student-centered, open-ended projects.

Here’s a “cheat sheet” for the four aspects.

Place

Both formal (credit-bearing courses, primarily at schools) and informal (extra-curricular activities, clubs, libraries, museums, community organizations, commercial spaces)

  • Hackerspace – “Hacking” indicates both an activity and political belief that systems should be open to all people to change and redistribute for the greater good. (roots in the 1960’s). More prevalent in Europe than US.
  • Makerspace – MAKE magazine (2005 – present). Popular Science for the 21st century. DIY and DIWO. Maker Faires. Adopted as a softer, safer alternative to hackerspace. Can be a separate room or integrated into classrooms.
  • Fab Lab – Spaces connected to the MIT Center for Bits and Atoms (565 worldwide) with a common charter and specific requirements for space and tools. Fablab also used as a generic nickname for any fabrication lab.
  • TechShop (and others) – non-profit or commercial organizations offering community tool sharing, classes, or incubation space.
  • Shop, science lab, classroom, studio – traditional names for school spaces for learning via hands-on activities.

Culture

  • Maker movement – technology-based extension of DIY culture, incorporating hobbyist tools to shortcut a traditional (corporate) design and development process, and the internet to openly share problems and solutions. Maker mindset – a positive, energized attitude of active tinkering to solve problems, using any and all materials at hand.
  • Hacker/hacking – Essential lessons about the world are learned “..from taking things apart, seeing how they work, and using this knowledge to create new and even more interesting things.” – Steven Levy
  • Green – values of ecology, conservation, and respect for the environment.
  • Citizen/amateur science – participation of non-professional scientists in gathering and interpreting data or collaborating in research projects.
  • Artisanal/craft movements – engaging in mindful and ethical practices to humanize activities, products, and production.

Process

  • Making – the act of creation. “Learning by making happens only when the making changes the maker.” – Sylvia Martinez
  • Tinkering – non-linear, iterative approach to reaching a goal. “messing about” with materials, tools, and ideas. “Making, fixing, and improving mental constructions.” – Seymour Papert
  • Design Thinking – customer-centered product design and development process popularized by IDEO and the Stanford d.school
  • Design – “to give form, or expression, to inner feelings and ideas, thus projecting them outwards, making them tangible.” – Edith Ackermann
  • Genius Hour – specific classroom time devoted to tinkering and open-ended projects. Patterned after companies (Google and FedEx, primarily) that allow employees to work on non-company projects on company time, thereby boosting morale and possibly resulting in products useful to the company.
  • Project-based Learning (PBL) – Projects are…“work that is substantial, shareable, and personally meaningful.” – Martinez & Stager

Beliefs about teaching and learning

  • Instructionism – Belief that learning is the result of teaching. Lecture, direct instruction.
  • Behaviorism – Belief that behavior is a result of reinforcement and punishment. Rote learning, worksheets, stars/stickers, grades.
  • Constructivism – Piagetian idea that learning is a personal, internal reconstruction—not a transmission of knowledge. Socratic method, modeling, manipulatives, experiments, research, groupwork, inquiry.
  • Constructionism – Seymour Papert extended constructivism with the idea that learning is even more effective when the learner is creating a meaningful, shareable artifact. PBL, making, citizen science.

What is design, but not Design Thinking?

Last week I wrote about Design Thinking being only one lens through which to view design — product design for a specific audience. The most common question after that is, what else is there?

One need only to look at the Wikipedia entry on design to start to see that this isn’t an easy question to answer. It lists more than twenty design disciplines, multiple process models, approaches, methods, and tries to differentiate between design as art, engineering, and production.

And on top is a big warning that says, “This article may contain inappropriate or misinterpreted citations that do not verify the text.”

The idea that design is many things, even both a noun and a verb should give us all pause that “teaching design” is any less complex.

So here’s a concrete example of one kind of design that isn’t “Design Thinking” — making a replacement part for a chainsaw using a 3D printer. The article is rich with detailed, useful tips about design, tools, and 3D printing. But no ideation in sight!

Sure — you could claim that it fits into a modified DT process. Simply declare that “you” are the audience, empathize with your lack of working chainsaw, understand that the need is “fix broken chainsaw,” consider that a point of view that you don’t want to buy a new one, or you just want to tinker around with 3D printing. Then have a nice brainstorm with yourself (don’t forget the post-it notes!), and present yourself with multiple alternatives to make, buy, or fix — or maybe you don’t really need a working chainsaw anyway — but really, does it need to be that convoluted?

3D Printed Replacement Parts

Designing a replacement part may not be an invention that saves the world, but it is design, it is real world, and it’s useful. It uses an iterative design process based on working with real materials and tools. There will be obstacles to overcome and learning taking place. It meets all the criteria of why anyone would buy a 3D printer for education.

So why exactly isn’t this a good candidate for Design Thinking? It’s because while it’s a rich and complex project, it’s not an ill-defined, tricky, or “wicked” problem. It’s not a new product or invention, and it’s not a moral dilemma or a way to practice empathy. When you try to apply Design Thinking to straightforward problems, the process is too complicated and front-loaded. (That’s not to say that straightforward problems can’t be complex.) But the issue is that often in schools, educators pick simple, straightforward problems for students to tackle because of curriculum constraints, lack of time, and lack of access to materials and tools. The Design Thinking process becomes an anchor, rather than a buoy.

If you can’t see the embedded article, it’s on 3Dprintingforbeginners.com, and is an excerpt from a cool new book, The Zombie Apocalypse Guide to 3D Printing.